Learning a reach trajectory based on binary reward feedback

Abstract Binary reward feedback on movement success is sufficient for learning some simple sensorimotor mappings in a reaching task, but not for some other tasks in which multiple kinematic factors contribute to performance. The critical condition for learning in more complex tasks remains unclear....

Full description

Saved in:
Bibliographic Details
Main Authors: Katinka van der Kooij, Nina M. van Mastrigt, Emily M. Crowe, Jeroen B. J. Smeets
Format: article
Language:EN
Published: Nature Portfolio 2021
Subjects:
R
Q
Online Access:https://doaj.org/article/e17f23876a6e43f5bb08ca42b22748b5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Binary reward feedback on movement success is sufficient for learning some simple sensorimotor mappings in a reaching task, but not for some other tasks in which multiple kinematic factors contribute to performance. The critical condition for learning in more complex tasks remains unclear. Here, we investigate whether reward-based motor learning is possible in a multi-dimensional trajectory matching task and whether simplifying the task by providing feedback on one factor at a time (‘factorized feedback’) can improve learning. In two experiments, participants performed a trajectory matching task in which learning was measured as a reduction in the error. In Experiment 1, participants matched a straight trajectory slanted in depth. We factorized the task by providing feedback on the slant error, the length error, or on their composite. In Experiment 2, participants matched a curved trajectory, also slanted in depth. In this experiment, we factorized the feedback by providing feedback on the slant error, the curvature error, or on the integral difference between the matched and target trajectory. In Experiment 1, there was anecdotal evidence that participants learnt the multidimensional task. Factorization did not improve learning. In Experiment 2, there was anecdotal evidence the multidimensional task could not be learnt. We conclude that, within a complexity range, multiple kinematic factors can be learnt in parallel.