Learning a reach trajectory based on binary reward feedback
Abstract Binary reward feedback on movement success is sufficient for learning some simple sensorimotor mappings in a reaching task, but not for some other tasks in which multiple kinematic factors contribute to performance. The critical condition for learning in more complex tasks remains unclear....
Guardado en:
Autores principales: | Katinka van der Kooij, Nina M. van Mastrigt, Emily M. Crowe, Jeroen B. J. Smeets |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e17f23876a6e43f5bb08ca42b22748b5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Joint speed feedback improves myoelectric prosthesis adaptation after perturbed reaches in non amputees
por: Eric J. Earley, et al.
Publicado: (2021) -
G-computation and machine learning for estimating the causal effects of binary exposure statuses on binary outcomes
por: Florent Le Borgne, et al.
Publicado: (2021) -
Increased functional connectivity between prefrontal cortex and reward system in pathological gambling.
por: Saskia Koehler, et al.
Publicado: (2013) -
A computational reward learning account of social media engagement
por: Björn Lindström, et al.
Publicado: (2021) -
The influence of attention and reward on the learning of stimulus-response associations
por: Devavrat Vartak, et al.
Publicado: (2017)