Behaviour detection in crowded classroom scenes via enhancing features robust to scale and perspective variations
Abstract Detecting human behaviours in images of crowded classroom scenes is a challenging task, due to the large variations of humans in scale and pose perspective. In this paper, two modules are proposed to tackle these two variations. First, an attention‐based RoI (region‐of‐interest) extractor i...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e18bac49cba44e608faa4e3b7caa524d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e18bac49cba44e608faa4e3b7caa524d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e18bac49cba44e608faa4e3b7caa524d2021-11-29T03:38:16ZBehaviour detection in crowded classroom scenes via enhancing features robust to scale and perspective variations1751-96671751-965910.1049/ipr2.12318https://doaj.org/article/e18bac49cba44e608faa4e3b7caa524d2021-12-01T00:00:00Zhttps://doi.org/10.1049/ipr2.12318https://doaj.org/toc/1751-9659https://doaj.org/toc/1751-9667Abstract Detecting human behaviours in images of crowded classroom scenes is a challenging task, due to the large variations of humans in scale and pose perspective. In this paper, two modules are proposed to tackle these two variations. First, an attention‐based RoI (region‐of‐interest) extractor is designed to handle scale variation. Feature fusion and attention mechanism are used to improve the RoI feature with more local and global information. Second, a transformation‐based detection head is introduced to handle perspective variation. The spatial transformation is adopted to extract consistent representation under various perspectives. Moreover, since there is a lack of proper datasets for human behaviour detection in classroom scenes, a new dataset is created, namely CLBD. The experiments on the proposed dataset demonstrate that the modules obtain significant improvements of performance over the state‐of‐the‐art detectors.Mingyu LiuFanman MengQingbo WuLinfeng XuQianghua LiaoWileyarticlePhotographyTR1-1050Computer softwareQA76.75-76.765ENIET Image Processing, Vol 15, Iss 14, Pp 3466-3475 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Photography TR1-1050 Computer software QA76.75-76.765 |
spellingShingle |
Photography TR1-1050 Computer software QA76.75-76.765 Mingyu Liu Fanman Meng Qingbo Wu Linfeng Xu Qianghua Liao Behaviour detection in crowded classroom scenes via enhancing features robust to scale and perspective variations |
description |
Abstract Detecting human behaviours in images of crowded classroom scenes is a challenging task, due to the large variations of humans in scale and pose perspective. In this paper, two modules are proposed to tackle these two variations. First, an attention‐based RoI (region‐of‐interest) extractor is designed to handle scale variation. Feature fusion and attention mechanism are used to improve the RoI feature with more local and global information. Second, a transformation‐based detection head is introduced to handle perspective variation. The spatial transformation is adopted to extract consistent representation under various perspectives. Moreover, since there is a lack of proper datasets for human behaviour detection in classroom scenes, a new dataset is created, namely CLBD. The experiments on the proposed dataset demonstrate that the modules obtain significant improvements of performance over the state‐of‐the‐art detectors. |
format |
article |
author |
Mingyu Liu Fanman Meng Qingbo Wu Linfeng Xu Qianghua Liao |
author_facet |
Mingyu Liu Fanman Meng Qingbo Wu Linfeng Xu Qianghua Liao |
author_sort |
Mingyu Liu |
title |
Behaviour detection in crowded classroom scenes via enhancing features robust to scale and perspective variations |
title_short |
Behaviour detection in crowded classroom scenes via enhancing features robust to scale and perspective variations |
title_full |
Behaviour detection in crowded classroom scenes via enhancing features robust to scale and perspective variations |
title_fullStr |
Behaviour detection in crowded classroom scenes via enhancing features robust to scale and perspective variations |
title_full_unstemmed |
Behaviour detection in crowded classroom scenes via enhancing features robust to scale and perspective variations |
title_sort |
behaviour detection in crowded classroom scenes via enhancing features robust to scale and perspective variations |
publisher |
Wiley |
publishDate |
2021 |
url |
https://doaj.org/article/e18bac49cba44e608faa4e3b7caa524d |
work_keys_str_mv |
AT mingyuliu behaviourdetectionincrowdedclassroomscenesviaenhancingfeaturesrobusttoscaleandperspectivevariations AT fanmanmeng behaviourdetectionincrowdedclassroomscenesviaenhancingfeaturesrobusttoscaleandperspectivevariations AT qingbowu behaviourdetectionincrowdedclassroomscenesviaenhancingfeaturesrobusttoscaleandperspectivevariations AT linfengxu behaviourdetectionincrowdedclassroomscenesviaenhancingfeaturesrobusttoscaleandperspectivevariations AT qianghualiao behaviourdetectionincrowdedclassroomscenesviaenhancingfeaturesrobusttoscaleandperspectivevariations |
_version_ |
1718407679148294144 |