Behaviour detection in crowded classroom scenes via enhancing features robust to scale and perspective variations
Abstract Detecting human behaviours in images of crowded classroom scenes is a challenging task, due to the large variations of humans in scale and pose perspective. In this paper, two modules are proposed to tackle these two variations. First, an attention‐based RoI (region‐of‐interest) extractor i...
Guardado en:
Autores principales: | Mingyu Liu, Fanman Meng, Qingbo Wu, Linfeng Xu, Qianghua Liao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e18bac49cba44e608faa4e3b7caa524d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multi‐dimensional weighted cross‐attention network in crowded scenes
por: Yefan Xie, et al.
Publicado: (2021) -
Human behaviour recognition with mid‐level representations for crowd understanding and analysis
por: Bangyong Sun, et al.
Publicado: (2021) -
Crowd understanding and analysis
por: Qi Wang, et al.
Publicado: (2021) -
Learn from Object Counting: Crowd Counting with Meta‐learning
por: Changtong Zan, et al.
Publicado: (2021) -
MFP‐Net: Multi‐scale feature pyramid network for crowd counting
por: Tao Lei, et al.
Publicado: (2021)