Cancer neoantigen prioritization through sensitive and reliable proteogenomics analysis
Identifying mutation-derived neoantigens by proteogenomics requires robust strategies for quality control. Here, the authors propose peptide retention time as an evaluation metric for proteogenomics quality control methods, and develop a deep learning algorithm for accurate retention time prediction...
Guardado en:
Autores principales: | Bo Wen, Kai Li, Yun Zhang, Bing Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e193f272716f4fd7ac8dbd5e93d0c909 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Proteogenomic discovery of neoantigens facilitates personalized multi-antigen targeted T cell immunotherapy for brain tumors
por: Samuel Rivero-Hinojosa, et al.
Publicado: (2021) -
Proteogenomic analysis of pancreatic cancer subtypes.
por: Doris Kafita, et al.
Publicado: (2021) -
Proteogenomic landscape of squamous cell lung cancer
por: Paul A. Stewart, et al.
Publicado: (2019) -
Neoantigens elicit T cell responses in breast cancer
por: Takafumi Morisaki, et al.
Publicado: (2021) -
Breast cancer quantitative proteome and proteogenomic landscape
por: Henrik J. Johansson, et al.
Publicado: (2019)