Three novel quantum-inspired swarm optimization algorithms using different bounded potential fields
Abstract Based on the behavior of the quantum particles, it is possible to formulate mathematical expressions to develop metaheuristic search optimization algorithms. This paper presents three novel quantum-inspired algorithms, which scenario is a particle swarm that is excited by a Lorentz, Rosen–M...
Guardado en:
Autores principales: | Manuel S. Alvarez-Alvarado, Francisco E. Alban-Chacón, Erick A. Lamilla-Rubio, Carlos D. Rodríguez-Gallegos, Washington Velásquez |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e194147ee12f458d9a24fe6c513a6c84 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Overview on Binary Optimization Using Swarm-Inspired Algorithms
por: Mariana Macedo, et al.
Publicado: (2021) -
A Hybrid Quantum Inspired Particle Swarm Optimization and Least Square Framework for Real-time Harmonic Estimation
por: Abu Bakar Waqas, et al.
Publicado: (2021) -
A multi-sample particle swarm optimization algorithm based on electric field force
por: Shangbo Zhou, et al.
Publicado: (2021) -
Sliding Mode Control of Electro-Hydraulic Servo System Based on Optimization of Quantum Particle Swarm Algorithm
por: Xinyu Zheng, et al.
Publicado: (2021) -
Zoo: Selecting Transcriptomic and Methylomic Biomarkers by Ensembling Animal-Inspired Swarm Intelligence Feature Selection Algorithms
por: Yuanyuan Han, et al.
Publicado: (2021)