LogSum + L 2 penalized logistic regression model for biomarker selection and cancer classification
Abstract Biomarker selection and cancer classification play an important role in knowledge discovery using genomic data. Successful identification of gene biomarkers and biological pathways can significantly improve the accuracy of diagnosis and help machine learning models have better performance o...
Enregistré dans:
| Auteurs principaux: | Xiao-Ying Liu, Sheng-Bing Wu, Wen-Quan Zeng, Zhan-Jiang Yuan, Hong-Bo Xu |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2020
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/e19c840865f04c5a980cb87fcd547687 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Influence diagnostics in Log-Logistic regression model with censored data
par: Javeria Khaleeq, et autres
Publié: (2022) -
Interpretable Log Contrasts for the Classification of Health Biomarkers: a New Approach to Balance Selection
par: Thomas P. Quinn, et autres
Publié: (2020) -
Kinetic interpretation of log-logistic dose-time response curves
par: Walter W. Focke, et autres
Publié: (2017) -
Leukemia prediction using sparse logistic regression.
par: Tapio Manninen, et autres
Publié: (2013) -
The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model
par: Mustafa Ç. Korkmaz, et autres
Publié: (2021)