LogSum + L 2 penalized logistic regression model for biomarker selection and cancer classification
Abstract Biomarker selection and cancer classification play an important role in knowledge discovery using genomic data. Successful identification of gene biomarkers and biological pathways can significantly improve the accuracy of diagnosis and help machine learning models have better performance o...
Guardado en:
Autores principales: | Xiao-Ying Liu, Sheng-Bing Wu, Wen-Quan Zeng, Zhan-Jiang Yuan, Hong-Bo Xu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e19c840865f04c5a980cb87fcd547687 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Influence diagnostics in Log-Logistic regression model with censored data
por: Javeria Khaleeq, et al.
Publicado: (2022) -
Interpretable Log Contrasts for the Classification of Health Biomarkers: a New Approach to Balance Selection
por: Thomas P. Quinn, et al.
Publicado: (2020) -
Kinetic interpretation of log-logistic dose-time response curves
por: Walter W. Focke, et al.
Publicado: (2017) -
Leukemia prediction using sparse logistic regression.
por: Tapio Manninen, et al.
Publicado: (2013) -
The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model
por: Mustafa Ç. Korkmaz, et al.
Publicado: (2021)