Determining the contribution of environmental factors in controlling dust pollution during cold and warm months of western Iran using different data mining algorithms and game theory
Dust pollution is one of the major environmental crises in the arid regions of Iran and there is a need to predict dust pollution and identify its controlling factors to help reduce its adverse effects on the livelihood of residents of these areas. Although deep neural networks (DNN) are powerful to...
Guardado en:
Autores principales: | Zohre Ebrahimi-Khusfi, Ruhollah Taghizadeh-Mehrjardi, Fatemeh Roustaei, Mohsen Ebrahimi-Khusfi, Amir Hosein Mosavi, Brandon Heung, Mojtaba Soleimani-Sardo, Thomas Scholten |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e19d8a82496c489b832ccd187ef87b45 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting the number of dusty days around the desert wetlands in southeastern Iran using feature selection and machine learning techniques
por: Zohre Ebrahimi-Khusfi, et al.
Publicado: (2021) -
Synoptic Causes and Socio-Economic Consequences of a Severe Dust Storm in the Middle East
por: Nick Middleton, et al.
Publicado: (2021) -
Evaluation of Nine Operational Models in Forecasting Different Types of Synoptic Dust Events in the Middle East
por: Sara Karami, et al.
Publicado: (2021) -
Bacterial Characteristics of Dust Particle Saltation in Gobi Dust Sites, Mongolia
por: Katsuro Hagiwara, et al.
Publicado: (2021) -
Dust suppressant treatments: Quality control
por: Valenzuela T,Pamela, et al.
Publicado: (2014)