Evaluating the Good Ontology Design Guideline (GoodOD) with the ontology quality requirements and evaluation method and metrics (OQuaRE).

<h4>Objective</h4>To (1) evaluate the GoodOD guideline for ontology development by applying the OQuaRE evaluation method and metrics to the ontology artefacts that were produced by students in a randomized controlled trial, and (2) informally compare the OQuaRE evaluation method with gol...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Astrid Duque-Ramos, Martin Boeker, Ludger Jansen, Stefan Schulz, Miguela Iniesta, Jesualdo Tomás Fernández-Breis
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e1a3db713a284299a76e9a1ccd5a8c7c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<h4>Objective</h4>To (1) evaluate the GoodOD guideline for ontology development by applying the OQuaRE evaluation method and metrics to the ontology artefacts that were produced by students in a randomized controlled trial, and (2) informally compare the OQuaRE evaluation method with gold standard and competency questions based evaluation methods, respectively.<h4>Background</h4>In the last decades many methods for ontology construction and ontology evaluation have been proposed. However, none of them has become a standard and there is no empirical evidence of comparative evaluation of such methods. This paper brings together GoodOD and OQuaRE. GoodOD is a guideline for developing robust ontologies. It was previously evaluated in a randomized controlled trial employing metrics based on gold standard ontologies and competency questions as outcome parameters. OQuaRE is a method for ontology quality evaluation which adapts the SQuaRE standard for software product quality to ontologies and has been successfully used for evaluating the quality of ontologies.<h4>Methods</h4>In this paper, we evaluate the effect of training in ontology construction based on the GoodOD guideline within the OQuaRE quality evaluation framework and compare the results with those obtained for the previous studies based on the same data.<h4>Results</h4>Our results show a significant effect of the GoodOD training over developed ontologies by topics: (a) a highly significant effect was detected in three topics from the analysis of the ontologies of untrained and trained students; (b) both positive and negative training effects with respect to the gold standard were found for five topics.<h4>Conclusion</h4>The GoodOD guideline had a significant effect over the quality of the ontologies developed. Our results show that GoodOD ontologies can be effectively evaluated using OQuaRE and that OQuaRE is able to provide additional useful information about the quality of the GoodOD ontologies.