Combined Wavelet Transform With Long Short-Term Memory Neural Network for Water Table Depth Prediction in Baoding City, North China Plain
Accurate estimation of water table depth dynamics is essential for water resource management, especially in areas where groundwater is overexploited. In recent years, as a data-driven model, artificial neural networks (NNs) have been widely used in hydrological modeling. However, due to the non-stat...
Guardado en:
Autores principales: | Zehua Liang, Yaping Liu, Hongchang Hu, Haoqian Li, Yuqing Ma, Mohd Yawar Ali Khan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e1a5258f86d142f4be6def6e4f4a910b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predictive Error Compensating Wavelet Neural Network Model for Multivariable Time Series Prediction
por: Ajla Kulaglic, et al.
Publicado: (2021) -
Model Reference Adaptive Control based on a Self-Recurrent Wavelet Neural Network Utilizing Micro Artificial Immune Systems
por: Omar Farouq Lutfy, et al.
Publicado: (2017) -
Evaluation of soft computing and regression-based techniques for the estimation of evaporation
por: Aparajita Singh, et al.
Publicado: (2021) -
Experimental evaluation and numerical modelling of the quality of photovoltaic modules
por: Kristo Karjust, et al.
Publicado: (2021) -
Faster Post-Earthquake Damage Assessment Based on 1D Convolutional Neural Networks
por: Xinzhe Yuan, et al.
Publicado: (2021)