Some Invariant Properties of Quasi-Möbius Maps
We investigate properties which remain invariant under the action of quasi-Möbius maps of quasimetric spaces. A metric space is called doubling with constant D if every ball of finite radius can be covered by at most D balls of half the radius. It is shown that the doubling property is an invariant...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e1a6c4b30b504567870e225c26b04e8a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We investigate properties which remain invariant under the action of quasi-Möbius maps of quasimetric spaces. A metric space is called doubling with constant D if every ball of finite radius can be covered by at most D balls of half the radius. It is shown that the doubling property is an invariant property for (quasi-)Möbius maps. Additionally it is shown that the property of uniform disconnectedness is an invariant for (quasi-)Möbius maps as well. |
---|