Some Invariant Properties of Quasi-Möbius Maps
We investigate properties which remain invariant under the action of quasi-Möbius maps of quasimetric spaces. A metric space is called doubling with constant D if every ball of finite radius can be covered by at most D balls of half the radius. It is shown that the doubling property is an invariant...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e1a6c4b30b504567870e225c26b04e8a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e1a6c4b30b504567870e225c26b04e8a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e1a6c4b30b504567870e225c26b04e8a2021-12-05T14:10:38ZSome Invariant Properties of Quasi-Möbius Maps2299-327410.1515/agms-2017-0004https://doaj.org/article/e1a6c4b30b504567870e225c26b04e8a2017-09-01T00:00:00Zhttps://doi.org/10.1515/agms-2017-0004https://doaj.org/toc/2299-3274We investigate properties which remain invariant under the action of quasi-Möbius maps of quasimetric spaces. A metric space is called doubling with constant D if every ball of finite radius can be covered by at most D balls of half the radius. It is shown that the doubling property is an invariant property for (quasi-)Möbius maps. Additionally it is shown that the property of uniform disconnectedness is an invariant for (quasi-)Möbius maps as well.Heer LorenoDe Gruyterarticlemöbius structuresdoubling propertyquasi-möbius mapsuniform disconnectednessAnalysisQA299.6-433ENAnalysis and Geometry in Metric Spaces, Vol 5, Iss 1, Pp 69-77 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
möbius structures doubling property quasi-möbius maps uniform disconnectedness Analysis QA299.6-433 |
spellingShingle |
möbius structures doubling property quasi-möbius maps uniform disconnectedness Analysis QA299.6-433 Heer Loreno Some Invariant Properties of Quasi-Möbius Maps |
description |
We investigate properties which remain invariant under the action of quasi-Möbius maps of quasimetric spaces. A metric space is called doubling with constant D if every ball of finite radius can be covered by at most D balls of half the radius. It is shown that the doubling property is an invariant property for (quasi-)Möbius maps. Additionally it is shown that the property of uniform disconnectedness is an invariant for (quasi-)Möbius maps as well. |
format |
article |
author |
Heer Loreno |
author_facet |
Heer Loreno |
author_sort |
Heer Loreno |
title |
Some Invariant Properties of Quasi-Möbius Maps |
title_short |
Some Invariant Properties of Quasi-Möbius Maps |
title_full |
Some Invariant Properties of Quasi-Möbius Maps |
title_fullStr |
Some Invariant Properties of Quasi-Möbius Maps |
title_full_unstemmed |
Some Invariant Properties of Quasi-Möbius Maps |
title_sort |
some invariant properties of quasi-möbius maps |
publisher |
De Gruyter |
publishDate |
2017 |
url |
https://doaj.org/article/e1a6c4b30b504567870e225c26b04e8a |
work_keys_str_mv |
AT heerloreno someinvariantpropertiesofquasimobiusmaps |
_version_ |
1718371870657478656 |