Some Invariant Properties of Quasi-Möbius Maps

We investigate properties which remain invariant under the action of quasi-Möbius maps of quasimetric spaces. A metric space is called doubling with constant D if every ball of finite radius can be covered by at most D balls of half the radius. It is shown that the doubling property is an invariant...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Heer Loreno
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2017
Materias:
Acceso en línea:https://doaj.org/article/e1a6c4b30b504567870e225c26b04e8a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e1a6c4b30b504567870e225c26b04e8a
record_format dspace
spelling oai:doaj.org-article:e1a6c4b30b504567870e225c26b04e8a2021-12-05T14:10:38ZSome Invariant Properties of Quasi-Möbius Maps2299-327410.1515/agms-2017-0004https://doaj.org/article/e1a6c4b30b504567870e225c26b04e8a2017-09-01T00:00:00Zhttps://doi.org/10.1515/agms-2017-0004https://doaj.org/toc/2299-3274We investigate properties which remain invariant under the action of quasi-Möbius maps of quasimetric spaces. A metric space is called doubling with constant D if every ball of finite radius can be covered by at most D balls of half the radius. It is shown that the doubling property is an invariant property for (quasi-)Möbius maps. Additionally it is shown that the property of uniform disconnectedness is an invariant for (quasi-)Möbius maps as well.Heer LorenoDe Gruyterarticlemöbius structuresdoubling propertyquasi-möbius mapsuniform disconnectednessAnalysisQA299.6-433ENAnalysis and Geometry in Metric Spaces, Vol 5, Iss 1, Pp 69-77 (2017)
institution DOAJ
collection DOAJ
language EN
topic möbius structures
doubling property
quasi-möbius maps
uniform disconnectedness
Analysis
QA299.6-433
spellingShingle möbius structures
doubling property
quasi-möbius maps
uniform disconnectedness
Analysis
QA299.6-433
Heer Loreno
Some Invariant Properties of Quasi-Möbius Maps
description We investigate properties which remain invariant under the action of quasi-Möbius maps of quasimetric spaces. A metric space is called doubling with constant D if every ball of finite radius can be covered by at most D balls of half the radius. It is shown that the doubling property is an invariant property for (quasi-)Möbius maps. Additionally it is shown that the property of uniform disconnectedness is an invariant for (quasi-)Möbius maps as well.
format article
author Heer Loreno
author_facet Heer Loreno
author_sort Heer Loreno
title Some Invariant Properties of Quasi-Möbius Maps
title_short Some Invariant Properties of Quasi-Möbius Maps
title_full Some Invariant Properties of Quasi-Möbius Maps
title_fullStr Some Invariant Properties of Quasi-Möbius Maps
title_full_unstemmed Some Invariant Properties of Quasi-Möbius Maps
title_sort some invariant properties of quasi-möbius maps
publisher De Gruyter
publishDate 2017
url https://doaj.org/article/e1a6c4b30b504567870e225c26b04e8a
work_keys_str_mv AT heerloreno someinvariantpropertiesofquasimobiusmaps
_version_ 1718371870657478656