Some Invariant Properties of Quasi-Möbius Maps
We investigate properties which remain invariant under the action of quasi-Möbius maps of quasimetric spaces. A metric space is called doubling with constant D if every ball of finite radius can be covered by at most D balls of half the radius. It is shown that the doubling property is an invariant...
Guardado en:
Autor principal: | Heer Loreno |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e1a6c4b30b504567870e225c26b04e8a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On locating chromatic number of Möbius ladder graphs
por: Sakri,Redha, et al.
Publicado: (2021) -
Fixed point results for Geraghty quasi-contraction type mappings in dislocated quasi-metric spaces
por: Joy C. Umudu, et al.
Publicado: (2020) -
A best proximity point theorem for special generalized proximal β-quasi contractive mappings
por: M. Iadh Ayari, et al.
Publicado: (2019) -
On global classical solutions to one-dimensional compressible Navier–Stokes/Allen–Cahn system with density-dependent viscosity and vacuum
por: Menglong Su
Publicado: (2021) -
Möbius Transformation-Induced Distributions Provide Better Modelling for Protein Architecture
por: Mohammad Arashi, et al.
Publicado: (2021)