Some Invariant Properties of Quasi-Möbius Maps
We investigate properties which remain invariant under the action of quasi-Möbius maps of quasimetric spaces. A metric space is called doubling with constant D if every ball of finite radius can be covered by at most D balls of half the radius. It is shown that the doubling property is an invariant...
Enregistré dans:
Auteur principal: | Heer Loreno |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e1a6c4b30b504567870e225c26b04e8a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
On locating chromatic number of Möbius ladder graphs
par: Sakri,Redha, et autres
Publié: (2021) -
Fixed point results for Geraghty quasi-contraction type mappings in dislocated quasi-metric spaces
par: Joy C. Umudu, et autres
Publié: (2020) -
A best proximity point theorem for special generalized proximal β-quasi contractive mappings
par: M. Iadh Ayari, et autres
Publié: (2019) -
On global classical solutions to one-dimensional compressible Navier–Stokes/Allen–Cahn system with density-dependent viscosity and vacuum
par: Menglong Su
Publié: (2021) -
Möbius Transformation-Induced Distributions Provide Better Modelling for Protein Architecture
par: Mohammad Arashi, et autres
Publié: (2021)