Disruption of Cross-Feeding Inhibits Pathogen Growth in the Sputa of Patients with Cystic Fibrosis
ABSTRACT A critical limitation in the management of chronic polymicrobial infections is the lack of correlation between antibiotic susceptibility testing (AST) and patient responses to therapy. Underlying this disconnect is our inability to accurately recapitulate the in vivo environment and complex...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e1d0e59e56c340d5840da810d67defd0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e1d0e59e56c340d5840da810d67defd0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e1d0e59e56c340d5840da810d67defd02021-11-15T15:29:17ZDisruption of Cross-Feeding Inhibits Pathogen Growth in the Sputa of Patients with Cystic Fibrosis10.1128/mSphere.00343-202379-5042https://doaj.org/article/e1d0e59e56c340d5840da810d67defd02020-04-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSphere.00343-20https://doaj.org/toc/2379-5042ABSTRACT A critical limitation in the management of chronic polymicrobial infections is the lack of correlation between antibiotic susceptibility testing (AST) and patient responses to therapy. Underlying this disconnect is our inability to accurately recapitulate the in vivo environment and complex polymicrobial communities in vitro. However, emerging evidence suggests that, if modeled and tested accurately, interspecies relationships can be exploited by conventional antibiotics predicted to be ineffective by standard AST. As an example, under conditions where Pseudomonas aeruginosa relies on cocolonizing organisms for nutrients (i.e., cross-feeding), multidrug-resistant P. aeruginosa may be indirectly targeted by inhibiting the growth of its metabolic partners. While this has been shown in vitro using synthetic bacterial communities, the efficacy of a “weakest-link” approach to controlling host-associated polymicrobial infections has not yet been demonstrated. To test whether cross-feeding inhibition can be leveraged in clinically relevant contexts, we collected sputa from cystic fibrosis (CF) subjects and used enrichment culturing to isolate both P. aeruginosa and anaerobic bacteria from each sample. Predictably, both subpopulations showed various antibiotic susceptibilities when grown independently. However, when P. aeruginosa was cultured and treated under cooperative conditions in which it was dependent on anaerobic bacteria for nutrients, the growth of both the pathogen and the anaerobe was constrained despite their intrinsic antibiotic resistance profiles. These data demonstrate that the control of complex polymicrobial infections may be achieved by exploiting obligate or facultative interspecies relationships. Toward this end, in vitro susceptibility testing should evolve to more accurately reflect in vivo growth environments and microbial interactions found within them. IMPORTANCE Antibiotic efficacy achieved in vitro correlates poorly with clinical outcomes after treatment of chronic polymicrobial diseases; if a pathogen demonstrates susceptibility to a given antibiotic in the lab, that compound is often ineffective when administered clinically. Conversely, if a pathogen is resistant in vitro, patient treatment with that same compound can elicit a positive response. This discordance suggests that the in vivo growth environment impacts pathogen antibiotic susceptibility. Indeed, here we demonstrate that interspecies relationships among microbiotas in the sputa of cystic fibrosis patients can be targeted to indirectly inhibit the growth of Pseudomonas aeruginosa. The therapeutic implication is that control of chronic lung infections may be achieved by exploiting obligate or facultative relationships among airway bacterial community members. This strategy is particularly relevant for pathogens harboring intrinsic multidrug resistance and is broadly applicable to chronic polymicrobial airway, wound, and intra-abdominal infections.Jeffrey M. FlynnLydia C. CameronTalia D. WiggenJordan M. DunitzWilliam R. HarcombeRyan C. HunterAmerican Society for MicrobiologyarticlePseudomonas aeruginosaantibioticscross-feedingcystic fibrosisMicrobiologyQR1-502ENmSphere, Vol 5, Iss 2 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Pseudomonas aeruginosa antibiotics cross-feeding cystic fibrosis Microbiology QR1-502 |
spellingShingle |
Pseudomonas aeruginosa antibiotics cross-feeding cystic fibrosis Microbiology QR1-502 Jeffrey M. Flynn Lydia C. Cameron Talia D. Wiggen Jordan M. Dunitz William R. Harcombe Ryan C. Hunter Disruption of Cross-Feeding Inhibits Pathogen Growth in the Sputa of Patients with Cystic Fibrosis |
description |
ABSTRACT A critical limitation in the management of chronic polymicrobial infections is the lack of correlation between antibiotic susceptibility testing (AST) and patient responses to therapy. Underlying this disconnect is our inability to accurately recapitulate the in vivo environment and complex polymicrobial communities in vitro. However, emerging evidence suggests that, if modeled and tested accurately, interspecies relationships can be exploited by conventional antibiotics predicted to be ineffective by standard AST. As an example, under conditions where Pseudomonas aeruginosa relies on cocolonizing organisms for nutrients (i.e., cross-feeding), multidrug-resistant P. aeruginosa may be indirectly targeted by inhibiting the growth of its metabolic partners. While this has been shown in vitro using synthetic bacterial communities, the efficacy of a “weakest-link” approach to controlling host-associated polymicrobial infections has not yet been demonstrated. To test whether cross-feeding inhibition can be leveraged in clinically relevant contexts, we collected sputa from cystic fibrosis (CF) subjects and used enrichment culturing to isolate both P. aeruginosa and anaerobic bacteria from each sample. Predictably, both subpopulations showed various antibiotic susceptibilities when grown independently. However, when P. aeruginosa was cultured and treated under cooperative conditions in which it was dependent on anaerobic bacteria for nutrients, the growth of both the pathogen and the anaerobe was constrained despite their intrinsic antibiotic resistance profiles. These data demonstrate that the control of complex polymicrobial infections may be achieved by exploiting obligate or facultative interspecies relationships. Toward this end, in vitro susceptibility testing should evolve to more accurately reflect in vivo growth environments and microbial interactions found within them. IMPORTANCE Antibiotic efficacy achieved in vitro correlates poorly with clinical outcomes after treatment of chronic polymicrobial diseases; if a pathogen demonstrates susceptibility to a given antibiotic in the lab, that compound is often ineffective when administered clinically. Conversely, if a pathogen is resistant in vitro, patient treatment with that same compound can elicit a positive response. This discordance suggests that the in vivo growth environment impacts pathogen antibiotic susceptibility. Indeed, here we demonstrate that interspecies relationships among microbiotas in the sputa of cystic fibrosis patients can be targeted to indirectly inhibit the growth of Pseudomonas aeruginosa. The therapeutic implication is that control of chronic lung infections may be achieved by exploiting obligate or facultative relationships among airway bacterial community members. This strategy is particularly relevant for pathogens harboring intrinsic multidrug resistance and is broadly applicable to chronic polymicrobial airway, wound, and intra-abdominal infections. |
format |
article |
author |
Jeffrey M. Flynn Lydia C. Cameron Talia D. Wiggen Jordan M. Dunitz William R. Harcombe Ryan C. Hunter |
author_facet |
Jeffrey M. Flynn Lydia C. Cameron Talia D. Wiggen Jordan M. Dunitz William R. Harcombe Ryan C. Hunter |
author_sort |
Jeffrey M. Flynn |
title |
Disruption of Cross-Feeding Inhibits Pathogen Growth in the Sputa of Patients with Cystic Fibrosis |
title_short |
Disruption of Cross-Feeding Inhibits Pathogen Growth in the Sputa of Patients with Cystic Fibrosis |
title_full |
Disruption of Cross-Feeding Inhibits Pathogen Growth in the Sputa of Patients with Cystic Fibrosis |
title_fullStr |
Disruption of Cross-Feeding Inhibits Pathogen Growth in the Sputa of Patients with Cystic Fibrosis |
title_full_unstemmed |
Disruption of Cross-Feeding Inhibits Pathogen Growth in the Sputa of Patients with Cystic Fibrosis |
title_sort |
disruption of cross-feeding inhibits pathogen growth in the sputa of patients with cystic fibrosis |
publisher |
American Society for Microbiology |
publishDate |
2020 |
url |
https://doaj.org/article/e1d0e59e56c340d5840da810d67defd0 |
work_keys_str_mv |
AT jeffreymflynn disruptionofcrossfeedinginhibitspathogengrowthinthesputaofpatientswithcysticfibrosis AT lydiaccameron disruptionofcrossfeedinginhibitspathogengrowthinthesputaofpatientswithcysticfibrosis AT taliadwiggen disruptionofcrossfeedinginhibitspathogengrowthinthesputaofpatientswithcysticfibrosis AT jordanmdunitz disruptionofcrossfeedinginhibitspathogengrowthinthesputaofpatientswithcysticfibrosis AT williamrharcombe disruptionofcrossfeedinginhibitspathogengrowthinthesputaofpatientswithcysticfibrosis AT ryanchunter disruptionofcrossfeedinginhibitspathogengrowthinthesputaofpatientswithcysticfibrosis |
_version_ |
1718427919884222464 |