Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation
Generating and quantifying the effect of the promoter speciation in heterogeneous catalysts is very challenging. Here, the authors show that the precise palladium atoms architecture reached by controlled co-precipitation overcomes selectivity and stability limitations associated with palladium nanop...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e1d233556f754a7cb0f465c60257029e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Generating and quantifying the effect of the promoter speciation in heterogeneous catalysts is very challenging. Here, the authors show that the precise palladium atoms architecture reached by controlled co-precipitation overcomes selectivity and stability limitations associated with palladium nanoparticles for CO2-based methanol synthesis. |
---|