Machine learning applications to predict two-phase flow patterns
Recent advances in artificial intelligence with traditional machine learning algorithms and deep learning architectures solve complex classification problems. This work presents the performance of different artificial intelligence models to classify two-phase flow patterns, showing the best alternat...
Guardado en:
Autores principales: | Harold Brayan Arteaga-Arteaga, Alejandro Mora-Rubio, Frank Florez, Nicolas Murcia-Orjuela, Cristhian Eduardo Diaz-Ortega, Simon Orozco-Arias, Melissa delaPava, Mario Alejandro Bravo-Ortíz, Melvin Robinson, Pablo Guillen-Rondon, Reinel Tabares-Soto |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e1d8468b25c0456492404d1fa7d1a9e8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Enhancing the pattern recognition capacity of machine learning techniques: The importance of feature positioning
por: Debora Di Caprio, et al.
Publicado: (2022) -
Evaluation of computer methods for biomarker discovery on computational grids
por: Tonini,Gustavo, et al.
Publicado: (2013) -
Recognition of RNA-Binding Protein by Fusion of Multi-view and Multi-label Learning
por: YANG Haitao, DENG Zhaohong, WANG Shitong
Publicado: (2021) -
A Features Fusion Approach for Neonatal and Pediatrics Brain Tumor Image Analysis Using Genetic and Deep Learning Techniques
por: Prashantha SJ, et al.
Publicado: (2021) -
Classification of UNSW-NB15 dataset using Exploratory Data Analysis using Ensemble Learning
por: Neha Sharma, et al.
Publicado: (2021)