Canopy distribution and microclimate preferences of sterile and wild Queensland fruit flies

Abstract Insects tend to live within well-defined habitats, and at smaller scales can have distinct microhabitat preferences. These preferences are important, but often overlooked, in applications of the sterile insect technique. Different microhabitat preferences of sterile and wild insects may ref...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jess R. Inskeep, Andrew P. Allen, Phillip W. Taylor, Polychronis Rempoulakis, Christopher W. Weldon
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e1e5eebfc14647b782c0740209b91b6b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Insects tend to live within well-defined habitats, and at smaller scales can have distinct microhabitat preferences. These preferences are important, but often overlooked, in applications of the sterile insect technique. Different microhabitat preferences of sterile and wild insects may reflect differences in environmental tolerance and may lead to spatial separation in the field, both of which may reduce the control program efficiency. In this study, we compared the diurnal microhabitat distributions of mass-reared (fertile and sterile) and wild Queensland fruit flies, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Flies were individually tagged and released into field cages containing citrus trees. We recorded their locations in the canopies (height from ground, distance from canopy center), behavior (resting, grooming, walking, feeding), and the abiotic conditions on occupied leaves (temperature, humidity, light intensity) throughout the day. Flies from all groups moved lower in the canopy when temperature and light intensity were high, and humidity was low; lower canopy regions provided shelter from these conditions. Fertile and sterile mass-reared flies of both sexes were generally lower in the canopies than wild flies. Flies generally fed from the top sides of leaves that were lower in the canopy, suggesting food sources in these locations. Our observations suggest that mass-reared and wild B. tryoni occupy different locations in tree canopies, which could indicate different tolerances to environmental extremes and may result in spatial separation of sterile and wild flies when assessed at a landscape scale.