An Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm

The random forest (RF) algorithm is a typical representative of ensemble learning, which is widely used in rolling bearing fault diagnosis. In order to solve the problems of slower diagnosis speed and repeated voting of traditional RF algorithm in rolling bearing fault diagnosis under the big data e...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Lanjun Wan, Kun Gong, Gen Zhang, Xinpan Yuan, Changyun Li, Xiaojun Deng
Format: article
Langue:EN
Publié: IEEE 2021
Sujets:
Accès en ligne:https://doaj.org/article/e1eb03d32f8d4c5cadc4ece4b943b137
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

Documents similaires