An Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm
The random forest (RF) algorithm is a typical representative of ensemble learning, which is widely used in rolling bearing fault diagnosis. In order to solve the problems of slower diagnosis speed and repeated voting of traditional RF algorithm in rolling bearing fault diagnosis under the big data e...
Guardado en:
Autores principales: | Lanjun Wan, Kun Gong, Gen Zhang, Xinpan Yuan, Changyun Li, Xiaojun Deng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e1eb03d32f8d4c5cadc4ece4b943b137 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Rolling bearing fault detection based on vibration signal analysis and cumulative sum control chart
por: Mohammed Jawad Saja, et al.
Publicado: (2021) -
A Bearing Fault Diagnosis Method Based on PAVME and MEDE
por: Xiaoan Yan, et al.
Publicado: (2021) -
A study on the extraction of characteristics of compound faults of rolling bearings based on ITD-AF-CAF
por: Xiangdong Ge, et al.
Publicado: (2021) -
A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Compressed Sensing and Stacked Multi-Granularity Convolution Denoising Auto-Encoder
por: Chuang Liang, et al.
Publicado: (2021) -
Intelligent Fault Diagnosis and Forecast of Time-Varying Bearing Based on Deep Learning VMD-DenseNet
por: Shih-Lin Lin
Publicado: (2021)