An Efficient Rolling Bearing Fault Diagnosis Method Based on Spark and Improved Random Forest Algorithm
The random forest (RF) algorithm is a typical representative of ensemble learning, which is widely used in rolling bearing fault diagnosis. In order to solve the problems of slower diagnosis speed and repeated voting of traditional RF algorithm in rolling bearing fault diagnosis under the big data e...
Enregistré dans:
Auteurs principaux: | Lanjun Wan, Kun Gong, Gen Zhang, Xinpan Yuan, Changyun Li, Xiaojun Deng |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e1eb03d32f8d4c5cadc4ece4b943b137 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Rolling bearing fault detection based on vibration signal analysis and cumulative sum control chart
par: Mohammed Jawad Saja, et autres
Publié: (2021) -
A Bearing Fault Diagnosis Method Based on PAVME and MEDE
par: Xiaoan Yan, et autres
Publié: (2021) -
A study on the extraction of characteristics of compound faults of rolling bearings based on ITD-AF-CAF
par: Xiangdong Ge, et autres
Publié: (2021) -
A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Compressed Sensing and Stacked Multi-Granularity Convolution Denoising Auto-Encoder
par: Chuang Liang, et autres
Publié: (2021) -
Intelligent Fault Diagnosis and Forecast of Time-Varying Bearing Based on Deep Learning VMD-DenseNet
par: Shih-Lin Lin
Publié: (2021)