Quantitative Susceptibility Mapping-Derived Radiomic Features in Discriminating Multiple Sclerosis From Neuromyelitis Optica Spectrum Disorder
Objectives: To implement a machine learning model using radiomic features extracted from quantitative susceptibility mapping (QSM) in discriminating multiple sclerosis (MS) from neuromyelitis optica spectrum disorder (NMOSD).Materials and Methods: Forty-seven patients with MS (mean age = 40.00 ± 13....
Enregistré dans:
Auteurs principaux: | Zichun Yan, Huan Liu, Xiaoya Chen, Qiao Zheng, Chun Zeng, Yineng Zheng, Shuang Ding, Yuling Peng, Yongmei Li |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Frontiers Media S.A.
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e1ee6dae7aac4648aea7a45460f23fcd |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
No association of AQP4 polymorphisms with neuromyelitis optica and multiple sclerosis
par: Yang Ting-Ting, et autres
Publié: (2016) -
MRI Prognostic Factors in Multiple Sclerosis, Neuromyelitis Optica Spectrum Disorder, and Myelin Oligodendrocyte Antibody Disease
par: Rosa Cortese, et autres
Publié: (2021) -
Neuromyelitis Optica (NMO) in Children: A Rare Case Report
par: Dodik Tugasworo, et autres
Publié: (2020) -
Neuromielitis óptica y lupus eritematoso sistémico en un hombre: Caso clínico
par: Suárez H,Felipe, et autres
Publié: (2016) -
Successful treatment for psychomotor agitation in neuromyelitis optica spectrum disorder with trazodone–risperidone combination: a case report
par: Narita Z, et autres
Publié: (2017)