Microphysical process of precipitating hydrometeors from warm-front mid-level stratiform clouds revealed by ground-based lidar observations

<p>Mid-level stratiform precipitations during the passage of warm fronts were detailedly observed on two occasions (light and moderate rain) by a 355 nm polarization lidar and water vapor Raman lidar, both equipped with waterproof transparent roof windows. The hours-long precipitation streaks...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Y. Yi, F. Yi, F. Liu, Y. Zhang, C. Yu, Y. He
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
Acceso en línea:https://doaj.org/article/e1f485a634d64092849c6d9debb028cc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e1f485a634d64092849c6d9debb028cc
record_format dspace
spelling oai:doaj.org-article:e1f485a634d64092849c6d9debb028cc2021-12-03T11:27:17ZMicrophysical process of precipitating hydrometeors from warm-front mid-level stratiform clouds revealed by ground-based lidar observations10.5194/acp-21-17649-20211680-73161680-7324https://doaj.org/article/e1f485a634d64092849c6d9debb028cc2021-12-01T00:00:00Zhttps://acp.copernicus.org/articles/21/17649/2021/acp-21-17649-2021.pdfhttps://doaj.org/toc/1680-7316https://doaj.org/toc/1680-7324<p>Mid-level stratiform precipitations during the passage of warm fronts were detailedly observed on two occasions (light and moderate rain) by a 355 nm polarization lidar and water vapor Raman lidar, both equipped with waterproof transparent roof windows. The hours-long precipitation streaks shown in the lidar signal (<span class="inline-formula"><i>X</i></span>) and volume depolarization ratio (<span class="inline-formula"><i>δ</i><sub>v</sub></span>) reveal some ubiquitous features of the microphysical process of precipitating hydrometeors. We find that for the light-rain case precipitation that reaches the surface begins as ice-phase-dominant hydrometeors that fall out of a shallow liquid cloud layer at altitudes above the 0 <span class="inline-formula"><sup>∘</sup></span>C isotherm level, and the depolarization ratio magnitude of falling hydrometeors increases from the liquid-water values (<span class="inline-formula"><i>δ</i><sub>v</sub>&lt;0.09</span>) to the ice/snow values (<span class="inline-formula"><i>δ</i><sub>v</sub>&gt;0.20</span>) during the first 100–200 m of their descent. Subsequently, the falling hydrometeors yield a dense layer with an ice/snow bright band occurring above and a liquid-water bright band occurring below (separated by a lidar dark band) as a result of crossing the 0 <span class="inline-formula"><sup>∘</sup></span>C level. The ice/snow bright band might be a manifestation of local hydrometeor accumulation. Most falling raindrops shrink or vanish in the liquid-water bright band due to evaporation, whereas a few large raindrops fall out of the layer. We also find that a prominent <span class="inline-formula"><i>δ</i><sub>v</sub></span> peak (0.10–0.40) always occurs at an altitude of approximately 0.6 km when precipitation reaches the surface, reflecting the collision–coalescence growth of falling large raindrops and their subsequent spontaneous breakup. The microphysical process (at ice-bright-band altitudes and below) of moderate rain resembles that of the light-rain case, but more large-sized hydrometeors are involved.</p>Y. YiY. YiY. YiF. YiF. YiF. YiF. LiuF. LiuF. LiuY. ZhangY. ZhangY. ZhangC. YuC. YuC. YuY. HeY. HeY. HeCopernicus PublicationsarticlePhysicsQC1-999ChemistryQD1-999ENAtmospheric Chemistry and Physics, Vol 21, Pp 17649-17664 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
Chemistry
QD1-999
spellingShingle Physics
QC1-999
Chemistry
QD1-999
Y. Yi
Y. Yi
Y. Yi
F. Yi
F. Yi
F. Yi
F. Liu
F. Liu
F. Liu
Y. Zhang
Y. Zhang
Y. Zhang
C. Yu
C. Yu
C. Yu
Y. He
Y. He
Y. He
Microphysical process of precipitating hydrometeors from warm-front mid-level stratiform clouds revealed by ground-based lidar observations
description <p>Mid-level stratiform precipitations during the passage of warm fronts were detailedly observed on two occasions (light and moderate rain) by a 355 nm polarization lidar and water vapor Raman lidar, both equipped with waterproof transparent roof windows. The hours-long precipitation streaks shown in the lidar signal (<span class="inline-formula"><i>X</i></span>) and volume depolarization ratio (<span class="inline-formula"><i>δ</i><sub>v</sub></span>) reveal some ubiquitous features of the microphysical process of precipitating hydrometeors. We find that for the light-rain case precipitation that reaches the surface begins as ice-phase-dominant hydrometeors that fall out of a shallow liquid cloud layer at altitudes above the 0 <span class="inline-formula"><sup>∘</sup></span>C isotherm level, and the depolarization ratio magnitude of falling hydrometeors increases from the liquid-water values (<span class="inline-formula"><i>δ</i><sub>v</sub>&lt;0.09</span>) to the ice/snow values (<span class="inline-formula"><i>δ</i><sub>v</sub>&gt;0.20</span>) during the first 100–200 m of their descent. Subsequently, the falling hydrometeors yield a dense layer with an ice/snow bright band occurring above and a liquid-water bright band occurring below (separated by a lidar dark band) as a result of crossing the 0 <span class="inline-formula"><sup>∘</sup></span>C level. The ice/snow bright band might be a manifestation of local hydrometeor accumulation. Most falling raindrops shrink or vanish in the liquid-water bright band due to evaporation, whereas a few large raindrops fall out of the layer. We also find that a prominent <span class="inline-formula"><i>δ</i><sub>v</sub></span> peak (0.10–0.40) always occurs at an altitude of approximately 0.6 km when precipitation reaches the surface, reflecting the collision–coalescence growth of falling large raindrops and their subsequent spontaneous breakup. The microphysical process (at ice-bright-band altitudes and below) of moderate rain resembles that of the light-rain case, but more large-sized hydrometeors are involved.</p>
format article
author Y. Yi
Y. Yi
Y. Yi
F. Yi
F. Yi
F. Yi
F. Liu
F. Liu
F. Liu
Y. Zhang
Y. Zhang
Y. Zhang
C. Yu
C. Yu
C. Yu
Y. He
Y. He
Y. He
author_facet Y. Yi
Y. Yi
Y. Yi
F. Yi
F. Yi
F. Yi
F. Liu
F. Liu
F. Liu
Y. Zhang
Y. Zhang
Y. Zhang
C. Yu
C. Yu
C. Yu
Y. He
Y. He
Y. He
author_sort Y. Yi
title Microphysical process of precipitating hydrometeors from warm-front mid-level stratiform clouds revealed by ground-based lidar observations
title_short Microphysical process of precipitating hydrometeors from warm-front mid-level stratiform clouds revealed by ground-based lidar observations
title_full Microphysical process of precipitating hydrometeors from warm-front mid-level stratiform clouds revealed by ground-based lidar observations
title_fullStr Microphysical process of precipitating hydrometeors from warm-front mid-level stratiform clouds revealed by ground-based lidar observations
title_full_unstemmed Microphysical process of precipitating hydrometeors from warm-front mid-level stratiform clouds revealed by ground-based lidar observations
title_sort microphysical process of precipitating hydrometeors from warm-front mid-level stratiform clouds revealed by ground-based lidar observations
publisher Copernicus Publications
publishDate 2021
url https://doaj.org/article/e1f485a634d64092849c6d9debb028cc
work_keys_str_mv AT yyi microphysicalprocessofprecipitatinghydrometeorsfromwarmfrontmidlevelstratiformcloudsrevealedbygroundbasedlidarobservations
AT yyi microphysicalprocessofprecipitatinghydrometeorsfromwarmfrontmidlevelstratiformcloudsrevealedbygroundbasedlidarobservations
AT yyi microphysicalprocessofprecipitatinghydrometeorsfromwarmfrontmidlevelstratiformcloudsrevealedbygroundbasedlidarobservations
AT fyi microphysicalprocessofprecipitatinghydrometeorsfromwarmfrontmidlevelstratiformcloudsrevealedbygroundbasedlidarobservations
AT fyi microphysicalprocessofprecipitatinghydrometeorsfromwarmfrontmidlevelstratiformcloudsrevealedbygroundbasedlidarobservations
AT fyi microphysicalprocessofprecipitatinghydrometeorsfromwarmfrontmidlevelstratiformcloudsrevealedbygroundbasedlidarobservations
AT fliu microphysicalprocessofprecipitatinghydrometeorsfromwarmfrontmidlevelstratiformcloudsrevealedbygroundbasedlidarobservations
AT fliu microphysicalprocessofprecipitatinghydrometeorsfromwarmfrontmidlevelstratiformcloudsrevealedbygroundbasedlidarobservations
AT fliu microphysicalprocessofprecipitatinghydrometeorsfromwarmfrontmidlevelstratiformcloudsrevealedbygroundbasedlidarobservations
AT yzhang microphysicalprocessofprecipitatinghydrometeorsfromwarmfrontmidlevelstratiformcloudsrevealedbygroundbasedlidarobservations
AT yzhang microphysicalprocessofprecipitatinghydrometeorsfromwarmfrontmidlevelstratiformcloudsrevealedbygroundbasedlidarobservations
AT yzhang microphysicalprocessofprecipitatinghydrometeorsfromwarmfrontmidlevelstratiformcloudsrevealedbygroundbasedlidarobservations
AT cyu microphysicalprocessofprecipitatinghydrometeorsfromwarmfrontmidlevelstratiformcloudsrevealedbygroundbasedlidarobservations
AT cyu microphysicalprocessofprecipitatinghydrometeorsfromwarmfrontmidlevelstratiformcloudsrevealedbygroundbasedlidarobservations
AT cyu microphysicalprocessofprecipitatinghydrometeorsfromwarmfrontmidlevelstratiformcloudsrevealedbygroundbasedlidarobservations
AT yhe microphysicalprocessofprecipitatinghydrometeorsfromwarmfrontmidlevelstratiformcloudsrevealedbygroundbasedlidarobservations
AT yhe microphysicalprocessofprecipitatinghydrometeorsfromwarmfrontmidlevelstratiformcloudsrevealedbygroundbasedlidarobservations
AT yhe microphysicalprocessofprecipitatinghydrometeorsfromwarmfrontmidlevelstratiformcloudsrevealedbygroundbasedlidarobservations
_version_ 1718373301733031936