Deep learning neural networks to differentiate Stafne's bone cavity from pathological radiolucent lesions of the mandible in heterogeneous panoramic radiography.
This study aimed to develop a high-performance deep learning algorithm to differentiate Stafne's bone cavity (SBC) from cysts and tumors of the jaw based on images acquired from various panoramic radiographic systems. Data sets included 176 Stafne's bone cavities and 282 odontogenic cysts...
Guardado en:
Autores principales: | Ari Lee, Min Su Kim, Sang-Sun Han, PooGyeon Park, Chena Lee, Jong Pil Yun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e1f70e53393f401eb2d53d1f62db930a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mandibular Canal Duplication Prevalence, Digital Panoramic Radiography Analysis
por: Schilling Lara,Juan, et al.
Publicado: (2010) -
Radiation Dose and Risk in Dental Panoramic Radiography: literature review
por: Elmorabit Naoual, et al.
Publicado: (2021) -
Assessment of anatomical variations of mandibular canal depicted in panoramic radiography
por: Nidhi Thakur, et al.
Publicado: (2021) -
ACCURACY EVALUATION OF PANORAMIC RADIOGRAPHY IN DETECTING THE POSITION OF THIRD MOLAR ROOTS
por: S S. Haghanifar, et al.
Publicado: (2006) -
Radiographic Evaluation of the Prevalence of Stafne Bone Defect
por: Cavalcante,Israel Leal, et al.
Publicado: (2020)