Deep learning neural networks to differentiate Stafne's bone cavity from pathological radiolucent lesions of the mandible in heterogeneous panoramic radiography.
This study aimed to develop a high-performance deep learning algorithm to differentiate Stafne's bone cavity (SBC) from cysts and tumors of the jaw based on images acquired from various panoramic radiographic systems. Data sets included 176 Stafne's bone cavities and 282 odontogenic cysts...
Enregistré dans:
Auteurs principaux: | Ari Lee, Min Su Kim, Sang-Sun Han, PooGyeon Park, Chena Lee, Jong Pil Yun |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e1f70e53393f401eb2d53d1f62db930a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Mandibular Canal Duplication Prevalence, Digital Panoramic Radiography Analysis
par: Schilling Lara,Juan, et autres
Publié: (2010) -
Radiation Dose and Risk in Dental Panoramic Radiography: literature review
par: Elmorabit Naoual, et autres
Publié: (2021) -
Assessment of anatomical variations of mandibular canal depicted in panoramic radiography
par: Nidhi Thakur, et autres
Publié: (2021) -
ACCURACY EVALUATION OF PANORAMIC RADIOGRAPHY IN DETECTING THE POSITION OF THIRD MOLAR ROOTS
par: S S. Haghanifar, et autres
Publié: (2006) -
Radiographic Evaluation of the Prevalence of Stafne Bone Defect
par: Cavalcante,Israel Leal, et autres
Publié: (2020)