Effect of Streptococcus mutans on the flexural strength of resin-based restorative materials

Background: There are a limited number of studies about the effects of microbial aging on the mechanical properties of restorative materials. Therefore, this study aimed to evaluate the effect of simulated aging with Streptococcus mutans on the flexural strength of different resin-based materials.Ma...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Haleh Valizadeh Haghi, Hadi Peeri-Dogaheh, Sheida Fazlalizadeh, Malek Abazari, Reza Mohammadhosseini
Formato: article
Lenguaje:EN
Publicado: Wolters Kluwer Medknow Publications 2021
Materias:
Acceso en línea:https://doaj.org/article/e1fba000b70f46d496999ae75af045ee
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e1fba000b70f46d496999ae75af045ee
record_format dspace
spelling oai:doaj.org-article:e1fba000b70f46d496999ae75af045ee2021-11-12T10:10:19ZEffect of Streptococcus mutans on the flexural strength of resin-based restorative materials1735-33272008-025510.4103/1735-3327.328758https://doaj.org/article/e1fba000b70f46d496999ae75af045ee2021-01-01T00:00:00Zhttp://www.drjjournal.net/article.asp?issn=1735-3327;year=2021;volume=18;issue=1;spage=90;epage=90;aulast=Haghihttps://doaj.org/toc/1735-3327https://doaj.org/toc/2008-0255Background: There are a limited number of studies about the effects of microbial aging on the mechanical properties of restorative materials. Therefore, this study aimed to evaluate the effect of simulated aging with Streptococcus mutans on the flexural strength of different resin-based materials.Materials and Methods: This experimental study was performed on the blocks of different types of restorative materials including composite resin, giomer, and a resin-modified glass ionomer (RMGI). Moreover, three types of aging, such as 30-day storage in distilled water, S. mutans, and germ-free culture medium, were used in this study. The three-point bending flexural strength of the specimens before and after aging was measured according to the International Organization for Standardization-4049 standard. Data were analyzed by two-way ANOVA and post hoc Tukey's tests. A P < 0.05 was considered statistically significant.Results: Results showed that the 30-day aging with the S. mutans significantly reduced the flexural strength of all three types of materials (P = 0.00). In all restorative materials, storage in a bacteria-free culture medium acted the same as distilled water, and there was no significant difference between these two solutions in terms of the flexural strength of the material, compared to the before-aging strength (P > 0.05). Furthermore, no significant difference was observed between S. mutans-based aging and distilled water aging regarding RMGI (P = 0.75).Conclusion: It can be concluded that aging by S. mutans reduced the flexural strength in all three restorative materials.Haleh Valizadeh HaghiHadi Peeri-DogahehSheida FazlalizadehMalek AbazariReza MohammadhosseiniWolters Kluwer Medknow Publicationsarticleagingflexural strength streptococcus mutans DentistryRK1-715ENDental Research Journal, Vol 18, Iss 1, Pp 90-90 (2021)
institution DOAJ
collection DOAJ
language EN
topic aging
flexural strength
streptococcus mutans
Dentistry
RK1-715
spellingShingle aging
flexural strength
streptococcus mutans
Dentistry
RK1-715
Haleh Valizadeh Haghi
Hadi Peeri-Dogaheh
Sheida Fazlalizadeh
Malek Abazari
Reza Mohammadhosseini
Effect of Streptococcus mutans on the flexural strength of resin-based restorative materials
description Background: There are a limited number of studies about the effects of microbial aging on the mechanical properties of restorative materials. Therefore, this study aimed to evaluate the effect of simulated aging with Streptococcus mutans on the flexural strength of different resin-based materials.Materials and Methods: This experimental study was performed on the blocks of different types of restorative materials including composite resin, giomer, and a resin-modified glass ionomer (RMGI). Moreover, three types of aging, such as 30-day storage in distilled water, S. mutans, and germ-free culture medium, were used in this study. The three-point bending flexural strength of the specimens before and after aging was measured according to the International Organization for Standardization-4049 standard. Data were analyzed by two-way ANOVA and post hoc Tukey's tests. A P < 0.05 was considered statistically significant.Results: Results showed that the 30-day aging with the S. mutans significantly reduced the flexural strength of all three types of materials (P = 0.00). In all restorative materials, storage in a bacteria-free culture medium acted the same as distilled water, and there was no significant difference between these two solutions in terms of the flexural strength of the material, compared to the before-aging strength (P > 0.05). Furthermore, no significant difference was observed between S. mutans-based aging and distilled water aging regarding RMGI (P = 0.75).Conclusion: It can be concluded that aging by S. mutans reduced the flexural strength in all three restorative materials.
format article
author Haleh Valizadeh Haghi
Hadi Peeri-Dogaheh
Sheida Fazlalizadeh
Malek Abazari
Reza Mohammadhosseini
author_facet Haleh Valizadeh Haghi
Hadi Peeri-Dogaheh
Sheida Fazlalizadeh
Malek Abazari
Reza Mohammadhosseini
author_sort Haleh Valizadeh Haghi
title Effect of Streptococcus mutans on the flexural strength of resin-based restorative materials
title_short Effect of Streptococcus mutans on the flexural strength of resin-based restorative materials
title_full Effect of Streptococcus mutans on the flexural strength of resin-based restorative materials
title_fullStr Effect of Streptococcus mutans on the flexural strength of resin-based restorative materials
title_full_unstemmed Effect of Streptococcus mutans on the flexural strength of resin-based restorative materials
title_sort effect of streptococcus mutans on the flexural strength of resin-based restorative materials
publisher Wolters Kluwer Medknow Publications
publishDate 2021
url https://doaj.org/article/e1fba000b70f46d496999ae75af045ee
work_keys_str_mv AT halehvalizadehhaghi effectofstreptococcusmutansontheflexuralstrengthofresinbasedrestorativematerials
AT hadipeeridogaheh effectofstreptococcusmutansontheflexuralstrengthofresinbasedrestorativematerials
AT sheidafazlalizadeh effectofstreptococcusmutansontheflexuralstrengthofresinbasedrestorativematerials
AT malekabazari effectofstreptococcusmutansontheflexuralstrengthofresinbasedrestorativematerials
AT rezamohammadhosseini effectofstreptococcusmutansontheflexuralstrengthofresinbasedrestorativematerials
_version_ 1718431023678619648