Mosquito species identification using convolutional neural networks with a multitiered ensemble model for novel species detection

Abstract With over 3500 mosquito species described, accurate species identification of the few implicated in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered by limited global taxonomic expertise and specimen damage consistent across common capture met...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Adam Goodwin, Sanket Padmanabhan, Sanchit Hira, Margaret Glancey, Monet Slinowsky, Rakhil Immidisetti, Laura Scavo, Jewell Brey, Bala Murali Manoghar Sai Sudhakar, Tristan Ford, Collyn Heier, Yvonne-Marie Linton, David B. Pecor, Laura Caicedo-Quiroga, Soumyadipta Acharya
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e21bc90183f8402585e3f54b7e9d49ad
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e21bc90183f8402585e3f54b7e9d49ad
record_format dspace
spelling oai:doaj.org-article:e21bc90183f8402585e3f54b7e9d49ad2021-12-02T18:18:58ZMosquito species identification using convolutional neural networks with a multitiered ensemble model for novel species detection10.1038/s41598-021-92891-92045-2322https://doaj.org/article/e21bc90183f8402585e3f54b7e9d49ad2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-92891-9https://doaj.org/toc/2045-2322Abstract With over 3500 mosquito species described, accurate species identification of the few implicated in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered by limited global taxonomic expertise and specimen damage consistent across common capture methods. Convolutional neural networks (CNNs) are promising with limited sets of species, but image database requirements restrict practical implementation. Using an image database of 2696 specimens from 67 mosquito species, we address the practical open-set problem with a detection algorithm for novel species. Closed-set classification of 16 known species achieved 97.04 ± 0.87% accuracy independently, and 89.07 ± 5.58% when cascaded with novelty detection. Closed-set classification of 39 species produces a macro F1-score of 86.07 ± 1.81%. This demonstrates an accurate, scalable, and practical computer vision solution to identify wild-caught mosquitoes for implementation in biosurveillance and targeted vector control programs, without the need for extensive image database development for each new target region.Adam GoodwinSanket PadmanabhanSanchit HiraMargaret GlanceyMonet SlinowskyRakhil ImmidisettiLaura ScavoJewell BreyBala Murali Manoghar Sai SudhakarTristan FordCollyn HeierYvonne-Marie LintonDavid B. PecorLaura Caicedo-QuirogaSoumyadipta AcharyaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Adam Goodwin
Sanket Padmanabhan
Sanchit Hira
Margaret Glancey
Monet Slinowsky
Rakhil Immidisetti
Laura Scavo
Jewell Brey
Bala Murali Manoghar Sai Sudhakar
Tristan Ford
Collyn Heier
Yvonne-Marie Linton
David B. Pecor
Laura Caicedo-Quiroga
Soumyadipta Acharya
Mosquito species identification using convolutional neural networks with a multitiered ensemble model for novel species detection
description Abstract With over 3500 mosquito species described, accurate species identification of the few implicated in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered by limited global taxonomic expertise and specimen damage consistent across common capture methods. Convolutional neural networks (CNNs) are promising with limited sets of species, but image database requirements restrict practical implementation. Using an image database of 2696 specimens from 67 mosquito species, we address the practical open-set problem with a detection algorithm for novel species. Closed-set classification of 16 known species achieved 97.04 ± 0.87% accuracy independently, and 89.07 ± 5.58% when cascaded with novelty detection. Closed-set classification of 39 species produces a macro F1-score of 86.07 ± 1.81%. This demonstrates an accurate, scalable, and practical computer vision solution to identify wild-caught mosquitoes for implementation in biosurveillance and targeted vector control programs, without the need for extensive image database development for each new target region.
format article
author Adam Goodwin
Sanket Padmanabhan
Sanchit Hira
Margaret Glancey
Monet Slinowsky
Rakhil Immidisetti
Laura Scavo
Jewell Brey
Bala Murali Manoghar Sai Sudhakar
Tristan Ford
Collyn Heier
Yvonne-Marie Linton
David B. Pecor
Laura Caicedo-Quiroga
Soumyadipta Acharya
author_facet Adam Goodwin
Sanket Padmanabhan
Sanchit Hira
Margaret Glancey
Monet Slinowsky
Rakhil Immidisetti
Laura Scavo
Jewell Brey
Bala Murali Manoghar Sai Sudhakar
Tristan Ford
Collyn Heier
Yvonne-Marie Linton
David B. Pecor
Laura Caicedo-Quiroga
Soumyadipta Acharya
author_sort Adam Goodwin
title Mosquito species identification using convolutional neural networks with a multitiered ensemble model for novel species detection
title_short Mosquito species identification using convolutional neural networks with a multitiered ensemble model for novel species detection
title_full Mosquito species identification using convolutional neural networks with a multitiered ensemble model for novel species detection
title_fullStr Mosquito species identification using convolutional neural networks with a multitiered ensemble model for novel species detection
title_full_unstemmed Mosquito species identification using convolutional neural networks with a multitiered ensemble model for novel species detection
title_sort mosquito species identification using convolutional neural networks with a multitiered ensemble model for novel species detection
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/e21bc90183f8402585e3f54b7e9d49ad
work_keys_str_mv AT adamgoodwin mosquitospeciesidentificationusingconvolutionalneuralnetworkswithamultitieredensemblemodelfornovelspeciesdetection
AT sanketpadmanabhan mosquitospeciesidentificationusingconvolutionalneuralnetworkswithamultitieredensemblemodelfornovelspeciesdetection
AT sanchithira mosquitospeciesidentificationusingconvolutionalneuralnetworkswithamultitieredensemblemodelfornovelspeciesdetection
AT margaretglancey mosquitospeciesidentificationusingconvolutionalneuralnetworkswithamultitieredensemblemodelfornovelspeciesdetection
AT monetslinowsky mosquitospeciesidentificationusingconvolutionalneuralnetworkswithamultitieredensemblemodelfornovelspeciesdetection
AT rakhilimmidisetti mosquitospeciesidentificationusingconvolutionalneuralnetworkswithamultitieredensemblemodelfornovelspeciesdetection
AT laurascavo mosquitospeciesidentificationusingconvolutionalneuralnetworkswithamultitieredensemblemodelfornovelspeciesdetection
AT jewellbrey mosquitospeciesidentificationusingconvolutionalneuralnetworkswithamultitieredensemblemodelfornovelspeciesdetection
AT balamuralimanogharsaisudhakar mosquitospeciesidentificationusingconvolutionalneuralnetworkswithamultitieredensemblemodelfornovelspeciesdetection
AT tristanford mosquitospeciesidentificationusingconvolutionalneuralnetworkswithamultitieredensemblemodelfornovelspeciesdetection
AT collynheier mosquitospeciesidentificationusingconvolutionalneuralnetworkswithamultitieredensemblemodelfornovelspeciesdetection
AT yvonnemarielinton mosquitospeciesidentificationusingconvolutionalneuralnetworkswithamultitieredensemblemodelfornovelspeciesdetection
AT davidbpecor mosquitospeciesidentificationusingconvolutionalneuralnetworkswithamultitieredensemblemodelfornovelspeciesdetection
AT lauracaicedoquiroga mosquitospeciesidentificationusingconvolutionalneuralnetworkswithamultitieredensemblemodelfornovelspeciesdetection
AT soumyadiptaacharya mosquitospeciesidentificationusingconvolutionalneuralnetworkswithamultitieredensemblemodelfornovelspeciesdetection
_version_ 1718378187443929088