refineR: A Novel Algorithm for Reference Interval Estimation from Real-World Data
Abstract Reference intervals are essential for the interpretation of laboratory test results in medicine. We propose a novel indirect approach to estimate reference intervals from real-world data as an alternative to direct methods, which require samples from healthy individuals. The presented refin...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e221b54fbd294da994f4057aa0be46c4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Reference intervals are essential for the interpretation of laboratory test results in medicine. We propose a novel indirect approach to estimate reference intervals from real-world data as an alternative to direct methods, which require samples from healthy individuals. The presented refineR algorithm separates the non-pathological distribution from the pathological distribution of observed test results using an inverse approach and identifies the model that best explains the non-pathological distribution. To evaluate its performance, we simulated test results from six common laboratory analytes with a varying location and fraction of pathological test results. Estimated reference intervals were compared to the ground truth, an alternative indirect method (kosmic), and the direct method (N = 120 and N = 400 samples). Overall, refineR achieved the lowest mean percentage error of all methods (2.77%). Analyzing the amount of reference intervals within ± 1 total error deviation from the ground truth, refineR (82.5%) was inferior to the direct method with N = 400 samples (90.1%), but outperformed kosmic (70.8%) and the direct method with N = 120 (67.4%). Additionally, reference intervals estimated from pediatric data were comparable to published direct method studies. In conclusion, the refineR algorithm enables precise estimation of reference intervals from real-world data and represents a viable complement to the direct method. |
---|