Structures of KaiC circadian clock mutant proteins: a new phosphorylation site at T426 and mechanisms of kinase, ATPase and phosphatase.

<h4>Background</h4>The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro by three proteins, KaiA, KaiB and KaiC. Homo-hexameric KaiC displays kinase, phosphatase and ATPase activities; KaiA enhances KaiC phosphorylation and KaiB antagonizes KaiA....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rekha Pattanayek, Tetsuya Mori, Yao Xu, Sabuj Pattanayek, Carl H Johnson, Martin Egli
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2009
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e22edcfd75044aa38efec1607945d156
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e22edcfd75044aa38efec1607945d156
record_format dspace
spelling oai:doaj.org-article:e22edcfd75044aa38efec1607945d1562021-11-25T06:27:46ZStructures of KaiC circadian clock mutant proteins: a new phosphorylation site at T426 and mechanisms of kinase, ATPase and phosphatase.1932-620310.1371/journal.pone.0007529https://doaj.org/article/e22edcfd75044aa38efec1607945d1562009-11-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/19956664/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro by three proteins, KaiA, KaiB and KaiC. Homo-hexameric KaiC displays kinase, phosphatase and ATPase activities; KaiA enhances KaiC phosphorylation and KaiB antagonizes KaiA. Phosphorylation and dephosphorylation of the two known sites in the C-terminal half of KaiC subunits, T432 and S431, follow a strict order (TS-->pTS-->pTpS-->TpS-->TS) over the daily cycle, the origin of which is not understood. To address this void and to analyze the roles of KaiC active site residues, in particular T426, we determined structures of single and double P-site mutants of S. elongatus KaiC.<h4>Methodology and principal findings</h4>The conformations of the loop region harboring P-site residues T432 and S431 in the crystal structures of six KaiC mutant proteins exhibit subtle differences that result in various distances between Thr (or Ala/Asn/Glu) and Ser (or Ala/Asp) residues and the ATP gamma-phosphate. T432 is phosphorylated first because it lies consistently closer to Pgamma. The structures of the S431A and T432E/S431A mutants reveal phosphorylation at T426. The environments of the latter residue in the structures and functional data for T426 mutants in vitro and in vivo imply a role in dephosphorylation.<h4>Conclusions and significance</h4>We provide evidence for a third phosphorylation site in KaiC at T426. T426 and S431 are closely spaced and a KaiC subunit cannot carry phosphates at both sites simultaneously. Fewer subunits are phosphorylated at T426 in the two KaiC mutants compared to phosphorylated T432 and/or S431 residues in the structures of wt and other mutant KaiCs, suggesting that T426 phosphorylation may be labile. The structures combined with functional data for a host of KaiC mutant proteins help rationalize why S431 trails T432 in the loss of its phosphate and shed light on the mechanisms of the KaiC kinase, ATPase and phosphatase activities.Rekha PattanayekTetsuya MoriYao XuSabuj PattanayekCarl H JohnsonMartin EgliPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 4, Iss 11, p e7529 (2009)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Rekha Pattanayek
Tetsuya Mori
Yao Xu
Sabuj Pattanayek
Carl H Johnson
Martin Egli
Structures of KaiC circadian clock mutant proteins: a new phosphorylation site at T426 and mechanisms of kinase, ATPase and phosphatase.
description <h4>Background</h4>The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro by three proteins, KaiA, KaiB and KaiC. Homo-hexameric KaiC displays kinase, phosphatase and ATPase activities; KaiA enhances KaiC phosphorylation and KaiB antagonizes KaiA. Phosphorylation and dephosphorylation of the two known sites in the C-terminal half of KaiC subunits, T432 and S431, follow a strict order (TS-->pTS-->pTpS-->TpS-->TS) over the daily cycle, the origin of which is not understood. To address this void and to analyze the roles of KaiC active site residues, in particular T426, we determined structures of single and double P-site mutants of S. elongatus KaiC.<h4>Methodology and principal findings</h4>The conformations of the loop region harboring P-site residues T432 and S431 in the crystal structures of six KaiC mutant proteins exhibit subtle differences that result in various distances between Thr (or Ala/Asn/Glu) and Ser (or Ala/Asp) residues and the ATP gamma-phosphate. T432 is phosphorylated first because it lies consistently closer to Pgamma. The structures of the S431A and T432E/S431A mutants reveal phosphorylation at T426. The environments of the latter residue in the structures and functional data for T426 mutants in vitro and in vivo imply a role in dephosphorylation.<h4>Conclusions and significance</h4>We provide evidence for a third phosphorylation site in KaiC at T426. T426 and S431 are closely spaced and a KaiC subunit cannot carry phosphates at both sites simultaneously. Fewer subunits are phosphorylated at T426 in the two KaiC mutants compared to phosphorylated T432 and/or S431 residues in the structures of wt and other mutant KaiCs, suggesting that T426 phosphorylation may be labile. The structures combined with functional data for a host of KaiC mutant proteins help rationalize why S431 trails T432 in the loss of its phosphate and shed light on the mechanisms of the KaiC kinase, ATPase and phosphatase activities.
format article
author Rekha Pattanayek
Tetsuya Mori
Yao Xu
Sabuj Pattanayek
Carl H Johnson
Martin Egli
author_facet Rekha Pattanayek
Tetsuya Mori
Yao Xu
Sabuj Pattanayek
Carl H Johnson
Martin Egli
author_sort Rekha Pattanayek
title Structures of KaiC circadian clock mutant proteins: a new phosphorylation site at T426 and mechanisms of kinase, ATPase and phosphatase.
title_short Structures of KaiC circadian clock mutant proteins: a new phosphorylation site at T426 and mechanisms of kinase, ATPase and phosphatase.
title_full Structures of KaiC circadian clock mutant proteins: a new phosphorylation site at T426 and mechanisms of kinase, ATPase and phosphatase.
title_fullStr Structures of KaiC circadian clock mutant proteins: a new phosphorylation site at T426 and mechanisms of kinase, ATPase and phosphatase.
title_full_unstemmed Structures of KaiC circadian clock mutant proteins: a new phosphorylation site at T426 and mechanisms of kinase, ATPase and phosphatase.
title_sort structures of kaic circadian clock mutant proteins: a new phosphorylation site at t426 and mechanisms of kinase, atpase and phosphatase.
publisher Public Library of Science (PLoS)
publishDate 2009
url https://doaj.org/article/e22edcfd75044aa38efec1607945d156
work_keys_str_mv AT rekhapattanayek structuresofkaiccircadianclockmutantproteinsanewphosphorylationsiteatt426andmechanismsofkinaseatpaseandphosphatase
AT tetsuyamori structuresofkaiccircadianclockmutantproteinsanewphosphorylationsiteatt426andmechanismsofkinaseatpaseandphosphatase
AT yaoxu structuresofkaiccircadianclockmutantproteinsanewphosphorylationsiteatt426andmechanismsofkinaseatpaseandphosphatase
AT sabujpattanayek structuresofkaiccircadianclockmutantproteinsanewphosphorylationsiteatt426andmechanismsofkinaseatpaseandphosphatase
AT carlhjohnson structuresofkaiccircadianclockmutantproteinsanewphosphorylationsiteatt426andmechanismsofkinaseatpaseandphosphatase
AT martinegli structuresofkaiccircadianclockmutantproteinsanewphosphorylationsiteatt426andmechanismsofkinaseatpaseandphosphatase
_version_ 1718413714565103616