Impulse noise treatment in magnetotelluric inversion
The problem of model recovering in the presence of impulse noise on the data is considered for the magnetotelluric (MT) inverse problem. The application of total variation regularization along with L1-norm penalized data fitting (TVL1) is the usual approach for the impulse noise treatment in image r...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e22fc688d8d24c31b16f1c69efedd9b0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The problem of model recovering in the presence of impulse noise on the data is considered for the magnetotelluric (MT) inverse problem. The application of total variation regularization along with L1-norm penalized data fitting (TVL1) is the usual approach for the impulse noise treatment in image recovery. This combination works poorly when a high level of impulse noise is present on the data. A nonconvex operator named smoothly clipped absolute deviation (TVSCAD) was recently applied to the image recovery problem. This operator is solved using a sequence of TVL1 equivalent problems, providing a significant improvement over TVL1. In practice, TVSCAD requires the selection of several parameters, a task that can be very difficult to attain. A more simple approach to the presence of impulse noise in data is presented here. A nonconvex function is also considered in the data fitness operator, along with the total variation regularization operator. The nonconvex operator is solved by following a half-quadratic procedure of minimization. Results are presented for synthetic and also for field data, assessing the proposed algorithm’s capacity in model recovering under the influence of impulse noise on data for the MT problem. |
---|