Unsupervised Domain Adaptation Network With Category-Centric Prototype Aligner for Biomedical Image Segmentation
With the widespread success of deep learning in biomedical image segmentation, domain shift becomes a critical and challenging problem, as the gap between two domains can severely affect model performance when deployed to unseen data with heterogeneous features. To alleviate this problem, we present...
Enregistré dans:
Auteurs principaux: | Ping Gong, Wenwen Yu, Qiuwen Sun, Ruohan Zhao, Junfeng Hu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e246d9dba5aa49b89dd40c7392e666f7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Improving Unsupervised Domain Adaptive Re-Identification Via Source-Guided Selection of Pseudo-Labeling Hyperparameters
par: Fabian Dubourvieux, et autres
Publié: (2021) - Research on biomedical engineering
-
Additive and subtractive rapid prototyping techniques: a comparative analysis of FDM & CNC processes
par: Alvaro Neuenfeldt-Junior, et autres
Publié: (2021) -
Biomedical engineering online
Publié: (2002) -
The Category of Existential Continuum in the English Biographical References
par: D. A. Efremova
Publié: (2012)