Unsupervised Domain Adaptation Network With Category-Centric Prototype Aligner for Biomedical Image Segmentation
With the widespread success of deep learning in biomedical image segmentation, domain shift becomes a critical and challenging problem, as the gap between two domains can severely affect model performance when deployed to unseen data with heterogeneous features. To alleviate this problem, we present...
Guardado en:
Autores principales: | Ping Gong, Wenwen Yu, Qiuwen Sun, Ruohan Zhao, Junfeng Hu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e246d9dba5aa49b89dd40c7392e666f7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Improving Unsupervised Domain Adaptive Re-Identification Via Source-Guided Selection of Pseudo-Labeling Hyperparameters
por: Fabian Dubourvieux, et al.
Publicado: (2021) - Research on biomedical engineering
-
Additive and subtractive rapid prototyping techniques: a comparative analysis of FDM & CNC processes
por: Alvaro Neuenfeldt-Junior, et al.
Publicado: (2021) -
Biomedical engineering online
Publicado: (2002) -
The Category of Existential Continuum in the English Biographical References
por: D. A. Efremova
Publicado: (2012)