Unsupervised Domain Adaptation Network With Category-Centric Prototype Aligner for Biomedical Image Segmentation
With the widespread success of deep learning in biomedical image segmentation, domain shift becomes a critical and challenging problem, as the gap between two domains can severely affect model performance when deployed to unseen data with heterogeneous features. To alleviate this problem, we present...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e246d9dba5aa49b89dd40c7392e666f7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sea el primero en dejar un comentario!