What Does a Language-And-Vision Transformer See: The Impact of Semantic Information on Visual Representations
Neural networks have proven to be very successful in automatically capturing the composition of language and different structures across a range of multi-modal tasks. Thus, an important question to investigate is how neural networks learn and organise such structures. Numerous studies have examined...
Guardado en:
Autores principales: | Nikolai Ilinykh, Simon Dobnik |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e246edf91b36449eace5eac40210015e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
IET computer vision
Publicado: (2007) -
Biologically Inspired Deep Learning Model for Efficient Foveal-Peripheral Vision
por: Hristofor Lukanov, et al.
Publicado: (2021) -
Language Representation Models: An Overview
por: Thorben Schomacker, et al.
Publicado: (2021) -
Development of Gazi Functional Vision Assessment Instrument
por: Pinar Safak*, et al.
Publicado: (2021) - Vision research an international journal in visual science.