Optimality Conditions and Duality for a Class of Generalized Convex Interval-Valued Optimization Problems
This paper is devoted to derive optimality conditions and duality theorems for interval-valued optimization problems based on gH-symmetrically derivative. Further, the concepts of symmetric pseudo-convexity and symmetric quasi-convexity for interval-valued functions are proposed to extend above opti...
Enregistré dans:
Auteurs principaux: | Yating Guo, Guoju Ye, Wei Liu, Dafang Zhao, Savin Treanţǎ |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e25b964bdaa94f4094c2732d3f8d1e21 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Symmetric duality in complex spaces over cones
par: Ahmad Izhar, et autres
Publié: (2021) -
On Weak concircular Symmetries of Trans-Sasakian manifolds
par: Hui,Shyamal Kumar
Publié: (2011) -
Skew lattices
par: Srinivas,K. V. R
Publié: (2011) -
ON WEAK CONCIRCULAR SYMMETRIES OF LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS
par: Narain,Dhruwa, et autres
Publié: (2013) -
λ-quasi Cauchy sequence of fuzzy numbers
par: Baruah,Achyutananda, et autres
Publié: (2021)