A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice.

Resveratrol in high doses has been shown to extend lifespan in some studies in invertebrates and to prevent early mortality in mice fed a high-fat diet. We fed mice from middle age (14-months) to old age (30-months) either a control diet, a low dose of resveratrol (4.9 mg kg(-1) day(-1)), or a calor...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jamie L Barger, Tsuyoshi Kayo, James M Vann, Edward B Arias, Jelai Wang, Timothy A Hacker, Ying Wang, Daniel Raederstorff, Jason D Morrow, Christiaan Leeuwenburgh, David B Allison, Kurt W Saupe, Gregory D Cartee, Richard Weindruch, Tomas A Prolla
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2008
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e25f222114b3420ba995866183387c34
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Resveratrol in high doses has been shown to extend lifespan in some studies in invertebrates and to prevent early mortality in mice fed a high-fat diet. We fed mice from middle age (14-months) to old age (30-months) either a control diet, a low dose of resveratrol (4.9 mg kg(-1) day(-1)), or a calorie restricted (CR) diet and examined genome-wide transcriptional profiles. We report a striking transcriptional overlap of CR and resveratrol in heart, skeletal muscle and brain. Both dietary interventions inhibit gene expression profiles associated with cardiac and skeletal muscle aging, and prevent age-related cardiac dysfunction. Dietary resveratrol also mimics the effects of CR in insulin mediated glucose uptake in muscle. Gene expression profiling suggests that both CR and resveratrol may retard some aspects of aging through alterations in chromatin structure and transcription. Resveratrol, at doses that can be readily achieved in humans, fulfills the definition of a dietary compound that mimics some aspects of CR.