Deep Reinforcement Learning for Trading—A Critical Survey
Deep reinforcement learning (DRL) has achieved significant results in many machine learning (ML) benchmarks. In this short survey, we provide an overview of DRL applied to trading on financial markets with the purpose of unravelling common structures used in the trading community using DRL, as well...
Guardado en:
Autor principal: | Adrian Millea |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e2617242a51b4451a6674c11d77c1400 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Are Canadian medicine librarians directly supporting medical student health and wellness? A nation-wide survey
por: Jackie Phinney, et al.
Publicado: (2021) -
Systematic review support received and needed by researchers: a survey of libraries supporting Ontario medical schools
por: Sandra McKeown, et al.
Publicado: (2021) -
An Adaptive Threshold for the Canny Algorithm With Deep Reinforcement Learning
por: Keong-Hun Choi, et al.
Publicado: (2021) -
Reinforcement Learning Approaches to Optimal Market Making
por: Bruno Gašperov, et al.
Publicado: (2021) -
Applications of Multi-Agent Deep Reinforcement Learning: Models and Algorithms
por: Abdikarim Mohamed Ibrahim, et al.
Publicado: (2021)