Reducing subspaces for multiplication operators on the Dirichlet space through local inverses and Riemann surfaces

This paper gives a full characterization of the reducing subspaces for the multiplication operator Mϕ on the Dirichlet space with symbol of finite Blaschke product ϕ of order 5I 6I 7. The reducing subspaces of Mϕ on the Dirichlet space and Bergman space are related. Our strategy is to use local inve...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gu Caixing, Luo Shuaibing, Xiao Jie
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2017
Materias:
Acceso en línea:https://doaj.org/article/e267cf83995b49aabb2ca8028a78e831
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This paper gives a full characterization of the reducing subspaces for the multiplication operator Mϕ on the Dirichlet space with symbol of finite Blaschke product ϕ of order 5I 6I 7. The reducing subspaces of Mϕ on the Dirichlet space and Bergman space are related. Our strategy is to use local inverses and Riemann surfaces to study the reducing subspaces of Mϕ on the Bergman space. By this means, we determine the reducing subspaces of Mϕ on the Dirichlet space and answer some questions of Douglas-Putinar-Wang in [6].