Short-Term Effect of Induced Alterations in Testosterone Levels on Fasting Plasma Amino Acid Levels in Healthy Young Men

Long term effect of testosterone (T) deficiency impairs metabolism and is associated with muscle degradation and metabolic disease. The association seems to have a bidirectional nature and is not well understood. The present study aims to investigate the early and unidirectional metabolic effect of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: K. Barbara Sahlin, Indira Pla, Jéssica de Siqueira Guedes, Krzysztof Pawłowski, Roger Appelqvist, György Marko-Varga, Gilberto Barbosa Domont, Fábio César Sousa Nogueira, Aleksander Giwercman, Aniel Sanchez, Johan Malm
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/e28457666df24296b14f629d39dd9994
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Long term effect of testosterone (T) deficiency impairs metabolism and is associated with muscle degradation and metabolic disease. The association seems to have a bidirectional nature and is not well understood. The present study aims to investigate the early and unidirectional metabolic effect of induced T changes by measuring fasting amino acid (AA) levels in a human model, in which short-term T alterations were induced. We designed a human model of 30 healthy young males with pharmacologically induced T changes, which resulted in three time points for blood collection: (A) baseline, (B) low T (3 weeks post administration of gonadotropin releasing hormone antagonist) and (C) restored T (2 weeks after injection of T undecanoate). The influence of T on AAs was analyzed by spectrophotometry on plasma samples. Levels of 9 out of 23 AAs, of which 7 were essential AAs, were significantly increased at low T and are restored upon T supplementation. Levels of tyrosine and phenylalanine were most strongly associated to T changes. Short-term effect of T changes suggests an increased protein breakdown that is restored upon T supplementation. Fasting AA levels are able to monitor the early metabolic changes induced by the T fluctuations.