Nanoscale Elastoplastic Wrinkling of Ultrathin Molecular Films

Ultrathin molecular films deposited on a substrate are ubiquitously used in electronics, photonics, and additive manufacturing methods. The nanoscale surface instability of these systems under uniaxial compression is investigated here by molecular dynamics simulations. We focus on deviations from th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gianfranco Cordella, Antonio Tripodo, Francesco Puosi, Dario Pisignano, Dino Leporini
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/e2972fe02b294893b5ceebff2b0ea0a9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Ultrathin molecular films deposited on a substrate are ubiquitously used in electronics, photonics, and additive manufacturing methods. The nanoscale surface instability of these systems under uniaxial compression is investigated here by molecular dynamics simulations. We focus on deviations from the homogeneous macroscopic behavior due to the discrete, disordered nature of the deformed system, which might have critical importance for applications. The instability, which develops in the elastoplastic regime above a finite critical strain, leads to the growth of unidimensional wrinkling up to strains as large as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.5</mn></mrow></semantics></math></inline-formula>. We highlight both the dominant wavelength and the amplitude of the wavy structure. The wavelength is found to scale geometrically with the film length, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>∝</mo><mi>L</mi></mrow></semantics></math></inline-formula>, up to a compressive strain of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi><mo>≃</mo><mn>0.4</mn></mrow></semantics></math></inline-formula> at least, depending on the film length. The onset and growth of the wrinkling under <i>small</i> compression are quite well described by an extended version of the familiar square-root law in the strain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula> observed in macroscopic systems. Under <i>large</i> compression (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi><mo>≳</mo><mn>0.25</mn></mrow></semantics></math></inline-formula>), we find that the wrinkling amplitude increases while leaving the cross section nearly constant, offering a novel interpretation of the instability with a large amplitude. The contour length of the film topography is not constant under compression, which is in disagreement with the simple accordion model. These findings might be highly relevant for the design of novel and effective wrinkling and buckling patterns and architectures in flexible platforms for electronics and photonics.