Nanoscale Elastoplastic Wrinkling of Ultrathin Molecular Films
Ultrathin molecular films deposited on a substrate are ubiquitously used in electronics, photonics, and additive manufacturing methods. The nanoscale surface instability of these systems under uniaxial compression is investigated here by molecular dynamics simulations. We focus on deviations from th...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e2972fe02b294893b5ceebff2b0ea0a9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e2972fe02b294893b5ceebff2b0ea0a9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e2972fe02b294893b5ceebff2b0ea0a92021-11-11T17:11:42ZNanoscale Elastoplastic Wrinkling of Ultrathin Molecular Films10.3390/ijms2221117321422-00671661-6596https://doaj.org/article/e2972fe02b294893b5ceebff2b0ea0a92021-10-01T00:00:00Zhttps://www.mdpi.com/1422-0067/22/21/11732https://doaj.org/toc/1661-6596https://doaj.org/toc/1422-0067Ultrathin molecular films deposited on a substrate are ubiquitously used in electronics, photonics, and additive manufacturing methods. The nanoscale surface instability of these systems under uniaxial compression is investigated here by molecular dynamics simulations. We focus on deviations from the homogeneous macroscopic behavior due to the discrete, disordered nature of the deformed system, which might have critical importance for applications. The instability, which develops in the elastoplastic regime above a finite critical strain, leads to the growth of unidimensional wrinkling up to strains as large as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.5</mn></mrow></semantics></math></inline-formula>. We highlight both the dominant wavelength and the amplitude of the wavy structure. The wavelength is found to scale geometrically with the film length, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>∝</mo><mi>L</mi></mrow></semantics></math></inline-formula>, up to a compressive strain of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi><mo>≃</mo><mn>0.4</mn></mrow></semantics></math></inline-formula> at least, depending on the film length. The onset and growth of the wrinkling under <i>small</i> compression are quite well described by an extended version of the familiar square-root law in the strain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula> observed in macroscopic systems. Under <i>large</i> compression (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi><mo>≳</mo><mn>0.25</mn></mrow></semantics></math></inline-formula>), we find that the wrinkling amplitude increases while leaving the cross section nearly constant, offering a novel interpretation of the instability with a large amplitude. The contour length of the film topography is not constant under compression, which is in disagreement with the simple accordion model. These findings might be highly relevant for the design of novel and effective wrinkling and buckling patterns and architectures in flexible platforms for electronics and photonics.Gianfranco CordellaAntonio TripodoFrancesco PuosiDario PisignanoDino LeporiniMDPI AGarticleultrathin molecular filmsnanoscale surface instabilitieselastoplasticitywrinklingmolecular dynamicsBiology (General)QH301-705.5ChemistryQD1-999ENInternational Journal of Molecular Sciences, Vol 22, Iss 11732, p 11732 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
ultrathin molecular films nanoscale surface instabilities elastoplasticity wrinkling molecular dynamics Biology (General) QH301-705.5 Chemistry QD1-999 |
spellingShingle |
ultrathin molecular films nanoscale surface instabilities elastoplasticity wrinkling molecular dynamics Biology (General) QH301-705.5 Chemistry QD1-999 Gianfranco Cordella Antonio Tripodo Francesco Puosi Dario Pisignano Dino Leporini Nanoscale Elastoplastic Wrinkling of Ultrathin Molecular Films |
description |
Ultrathin molecular films deposited on a substrate are ubiquitously used in electronics, photonics, and additive manufacturing methods. The nanoscale surface instability of these systems under uniaxial compression is investigated here by molecular dynamics simulations. We focus on deviations from the homogeneous macroscopic behavior due to the discrete, disordered nature of the deformed system, which might have critical importance for applications. The instability, which develops in the elastoplastic regime above a finite critical strain, leads to the growth of unidimensional wrinkling up to strains as large as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.5</mn></mrow></semantics></math></inline-formula>. We highlight both the dominant wavelength and the amplitude of the wavy structure. The wavelength is found to scale geometrically with the film length, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>∝</mo><mi>L</mi></mrow></semantics></math></inline-formula>, up to a compressive strain of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi><mo>≃</mo><mn>0.4</mn></mrow></semantics></math></inline-formula> at least, depending on the film length. The onset and growth of the wrinkling under <i>small</i> compression are quite well described by an extended version of the familiar square-root law in the strain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula> observed in macroscopic systems. Under <i>large</i> compression (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi><mo>≳</mo><mn>0.25</mn></mrow></semantics></math></inline-formula>), we find that the wrinkling amplitude increases while leaving the cross section nearly constant, offering a novel interpretation of the instability with a large amplitude. The contour length of the film topography is not constant under compression, which is in disagreement with the simple accordion model. These findings might be highly relevant for the design of novel and effective wrinkling and buckling patterns and architectures in flexible platforms for electronics and photonics. |
format |
article |
author |
Gianfranco Cordella Antonio Tripodo Francesco Puosi Dario Pisignano Dino Leporini |
author_facet |
Gianfranco Cordella Antonio Tripodo Francesco Puosi Dario Pisignano Dino Leporini |
author_sort |
Gianfranco Cordella |
title |
Nanoscale Elastoplastic Wrinkling of Ultrathin Molecular Films |
title_short |
Nanoscale Elastoplastic Wrinkling of Ultrathin Molecular Films |
title_full |
Nanoscale Elastoplastic Wrinkling of Ultrathin Molecular Films |
title_fullStr |
Nanoscale Elastoplastic Wrinkling of Ultrathin Molecular Films |
title_full_unstemmed |
Nanoscale Elastoplastic Wrinkling of Ultrathin Molecular Films |
title_sort |
nanoscale elastoplastic wrinkling of ultrathin molecular films |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/e2972fe02b294893b5ceebff2b0ea0a9 |
work_keys_str_mv |
AT gianfrancocordella nanoscaleelastoplasticwrinklingofultrathinmolecularfilms AT antoniotripodo nanoscaleelastoplasticwrinklingofultrathinmolecularfilms AT francescopuosi nanoscaleelastoplasticwrinklingofultrathinmolecularfilms AT dariopisignano nanoscaleelastoplasticwrinklingofultrathinmolecularfilms AT dinoleporini nanoscaleelastoplasticwrinklingofultrathinmolecularfilms |
_version_ |
1718432149869166592 |