Nanoscale Elastoplastic Wrinkling of Ultrathin Molecular Films

Ultrathin molecular films deposited on a substrate are ubiquitously used in electronics, photonics, and additive manufacturing methods. The nanoscale surface instability of these systems under uniaxial compression is investigated here by molecular dynamics simulations. We focus on deviations from th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gianfranco Cordella, Antonio Tripodo, Francesco Puosi, Dario Pisignano, Dino Leporini
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/e2972fe02b294893b5ceebff2b0ea0a9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e2972fe02b294893b5ceebff2b0ea0a9
record_format dspace
spelling oai:doaj.org-article:e2972fe02b294893b5ceebff2b0ea0a92021-11-11T17:11:42ZNanoscale Elastoplastic Wrinkling of Ultrathin Molecular Films10.3390/ijms2221117321422-00671661-6596https://doaj.org/article/e2972fe02b294893b5ceebff2b0ea0a92021-10-01T00:00:00Zhttps://www.mdpi.com/1422-0067/22/21/11732https://doaj.org/toc/1661-6596https://doaj.org/toc/1422-0067Ultrathin molecular films deposited on a substrate are ubiquitously used in electronics, photonics, and additive manufacturing methods. The nanoscale surface instability of these systems under uniaxial compression is investigated here by molecular dynamics simulations. We focus on deviations from the homogeneous macroscopic behavior due to the discrete, disordered nature of the deformed system, which might have critical importance for applications. The instability, which develops in the elastoplastic regime above a finite critical strain, leads to the growth of unidimensional wrinkling up to strains as large as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.5</mn></mrow></semantics></math></inline-formula>. We highlight both the dominant wavelength and the amplitude of the wavy structure. The wavelength is found to scale geometrically with the film length, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>∝</mo><mi>L</mi></mrow></semantics></math></inline-formula>, up to a compressive strain of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi><mo>≃</mo><mn>0.4</mn></mrow></semantics></math></inline-formula> at least, depending on the film length. The onset and growth of the wrinkling under <i>small</i> compression are quite well described by an extended version of the familiar square-root law in the strain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula> observed in macroscopic systems. Under <i>large</i> compression (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi><mo>≳</mo><mn>0.25</mn></mrow></semantics></math></inline-formula>), we find that the wrinkling amplitude increases while leaving the cross section nearly constant, offering a novel interpretation of the instability with a large amplitude. The contour length of the film topography is not constant under compression, which is in disagreement with the simple accordion model. These findings might be highly relevant for the design of novel and effective wrinkling and buckling patterns and architectures in flexible platforms for electronics and photonics.Gianfranco CordellaAntonio TripodoFrancesco PuosiDario PisignanoDino LeporiniMDPI AGarticleultrathin molecular filmsnanoscale surface instabilitieselastoplasticitywrinklingmolecular dynamicsBiology (General)QH301-705.5ChemistryQD1-999ENInternational Journal of Molecular Sciences, Vol 22, Iss 11732, p 11732 (2021)
institution DOAJ
collection DOAJ
language EN
topic ultrathin molecular films
nanoscale surface instabilities
elastoplasticity
wrinkling
molecular dynamics
Biology (General)
QH301-705.5
Chemistry
QD1-999
spellingShingle ultrathin molecular films
nanoscale surface instabilities
elastoplasticity
wrinkling
molecular dynamics
Biology (General)
QH301-705.5
Chemistry
QD1-999
Gianfranco Cordella
Antonio Tripodo
Francesco Puosi
Dario Pisignano
Dino Leporini
Nanoscale Elastoplastic Wrinkling of Ultrathin Molecular Films
description Ultrathin molecular films deposited on a substrate are ubiquitously used in electronics, photonics, and additive manufacturing methods. The nanoscale surface instability of these systems under uniaxial compression is investigated here by molecular dynamics simulations. We focus on deviations from the homogeneous macroscopic behavior due to the discrete, disordered nature of the deformed system, which might have critical importance for applications. The instability, which develops in the elastoplastic regime above a finite critical strain, leads to the growth of unidimensional wrinkling up to strains as large as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.5</mn></mrow></semantics></math></inline-formula>. We highlight both the dominant wavelength and the amplitude of the wavy structure. The wavelength is found to scale geometrically with the film length, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>∝</mo><mi>L</mi></mrow></semantics></math></inline-formula>, up to a compressive strain of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi><mo>≃</mo><mn>0.4</mn></mrow></semantics></math></inline-formula> at least, depending on the film length. The onset and growth of the wrinkling under <i>small</i> compression are quite well described by an extended version of the familiar square-root law in the strain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula> observed in macroscopic systems. Under <i>large</i> compression (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi><mo>≳</mo><mn>0.25</mn></mrow></semantics></math></inline-formula>), we find that the wrinkling amplitude increases while leaving the cross section nearly constant, offering a novel interpretation of the instability with a large amplitude. The contour length of the film topography is not constant under compression, which is in disagreement with the simple accordion model. These findings might be highly relevant for the design of novel and effective wrinkling and buckling patterns and architectures in flexible platforms for electronics and photonics.
format article
author Gianfranco Cordella
Antonio Tripodo
Francesco Puosi
Dario Pisignano
Dino Leporini
author_facet Gianfranco Cordella
Antonio Tripodo
Francesco Puosi
Dario Pisignano
Dino Leporini
author_sort Gianfranco Cordella
title Nanoscale Elastoplastic Wrinkling of Ultrathin Molecular Films
title_short Nanoscale Elastoplastic Wrinkling of Ultrathin Molecular Films
title_full Nanoscale Elastoplastic Wrinkling of Ultrathin Molecular Films
title_fullStr Nanoscale Elastoplastic Wrinkling of Ultrathin Molecular Films
title_full_unstemmed Nanoscale Elastoplastic Wrinkling of Ultrathin Molecular Films
title_sort nanoscale elastoplastic wrinkling of ultrathin molecular films
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/e2972fe02b294893b5ceebff2b0ea0a9
work_keys_str_mv AT gianfrancocordella nanoscaleelastoplasticwrinklingofultrathinmolecularfilms
AT antoniotripodo nanoscaleelastoplasticwrinklingofultrathinmolecularfilms
AT francescopuosi nanoscaleelastoplasticwrinklingofultrathinmolecularfilms
AT dariopisignano nanoscaleelastoplasticwrinklingofultrathinmolecularfilms
AT dinoleporini nanoscaleelastoplasticwrinklingofultrathinmolecularfilms
_version_ 1718432149869166592