Antiangiogenic activity of phthalides-enriched Angelica Sinensis extract by suppressing WSB-1/pVHL/HIF-1α/VEGF signaling in bladder cancer
Abstract The hypoxia-inducible factor-1α (HIF-1α) plays a critical role in tumor angiogenesis. It has been reported that the acetone extract of Angelica sinensis (AE-AS) rich in phthalides is able to inhibit cancer cell proliferation. However, whether AE-AS reduces cancer angiogenesis remains unknow...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e2996d676c3f4a0e9d68da5105010343 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The hypoxia-inducible factor-1α (HIF-1α) plays a critical role in tumor angiogenesis. It has been reported that the acetone extract of Angelica sinensis (AE-AS) rich in phthalides is able to inhibit cancer cell proliferation. However, whether AE-AS reduces cancer angiogenesis remains unknown. In this study, we demonstrated that AE-AS significantly inhibited the angiogenesis in vitro and in vivo evidenced by attenuation of the tube formation in hypoxic human umbilical vascular endothelial cells (HUVECs), and the vasculature generation in Matrigel plug, the chicken chorioallantoic membrane, and tumors. Treatment with AE-AS markedly decreased the protein accumulation and transcriptional activity of HIF-1α, vascular endothelial growth factor (VEGF) expression/secretion, and VEGFR2 phosphorylation in hypoxic human bladder cancer (T24) cells and tumor tissues accompanied by a reduction of tumor growth. Notably, AE-AS-induced HIF-1α protein degradation may, at least partly, attribute to inhibition of WSB-1-dependent pVHL degradation. Moreover, VEGFR2-activated PI3K/AKT/mTOR signaling pathway in hypoxic T24 cells was greatly inhibited by AE-AS. Collectively, AE-AS may be a potential anticancer agent by attenuating cancer angiogenesis via suppression of WSB-1/pVHL/HIF-1α/VEGF/VEGFR2 cascade. |
---|