Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies

Abstract Predicting the structure of large molecular assemblies remains a challenging task in structural biology when using integrative modeling approaches. One of the main issues stems from the treatment of heterogeneous experimental data used to predict the architecture of native complexes. We pro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Giorgio Tamò, Andrea Maesani, Sylvain Träger, Matteo T. Degiacomi, Dario Floreano, Matteo Dal Peraro
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e29bb2fc464449f9869ec21e95a8eb67
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Predicting the structure of large molecular assemblies remains a challenging task in structural biology when using integrative modeling approaches. One of the main issues stems from the treatment of heterogeneous experimental data used to predict the architecture of native complexes. We propose a new method, applied here for the first time to a set of symmetrical complexes, based on evolutionary computation that treats every available experimental input independently, bypassing the need to balance weight components assigned to aggregated fitness functions during optimization.