Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies
Abstract Predicting the structure of large molecular assemblies remains a challenging task in structural biology when using integrative modeling approaches. One of the main issues stems from the treatment of heterogeneous experimental data used to predict the architecture of native complexes. We pro...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e29bb2fc464449f9869ec21e95a8eb67 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e29bb2fc464449f9869ec21e95a8eb67 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e29bb2fc464449f9869ec21e95a8eb672021-12-02T15:04:54ZDisentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies10.1038/s41598-017-00266-w2045-2322https://doaj.org/article/e29bb2fc464449f9869ec21e95a8eb672017-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-00266-whttps://doaj.org/toc/2045-2322Abstract Predicting the structure of large molecular assemblies remains a challenging task in structural biology when using integrative modeling approaches. One of the main issues stems from the treatment of heterogeneous experimental data used to predict the architecture of native complexes. We propose a new method, applied here for the first time to a set of symmetrical complexes, based on evolutionary computation that treats every available experimental input independently, bypassing the need to balance weight components assigned to aggregated fitness functions during optimization.Giorgio TamòAndrea MaesaniSylvain TrägerMatteo T. DegiacomiDario FloreanoMatteo Dal PeraroNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Giorgio Tamò Andrea Maesani Sylvain Träger Matteo T. Degiacomi Dario Floreano Matteo Dal Peraro Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies |
description |
Abstract Predicting the structure of large molecular assemblies remains a challenging task in structural biology when using integrative modeling approaches. One of the main issues stems from the treatment of heterogeneous experimental data used to predict the architecture of native complexes. We propose a new method, applied here for the first time to a set of symmetrical complexes, based on evolutionary computation that treats every available experimental input independently, bypassing the need to balance weight components assigned to aggregated fitness functions during optimization. |
format |
article |
author |
Giorgio Tamò Andrea Maesani Sylvain Träger Matteo T. Degiacomi Dario Floreano Matteo Dal Peraro |
author_facet |
Giorgio Tamò Andrea Maesani Sylvain Träger Matteo T. Degiacomi Dario Floreano Matteo Dal Peraro |
author_sort |
Giorgio Tamò |
title |
Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies |
title_short |
Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies |
title_full |
Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies |
title_fullStr |
Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies |
title_full_unstemmed |
Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies |
title_sort |
disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/e29bb2fc464449f9869ec21e95a8eb67 |
work_keys_str_mv |
AT giorgiotamo disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies AT andreamaesani disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies AT sylvaintrager disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies AT matteotdegiacomi disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies AT dariofloreano disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies AT matteodalperaro disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies |
_version_ |
1718389049733939200 |