Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies

Abstract Predicting the structure of large molecular assemblies remains a challenging task in structural biology when using integrative modeling approaches. One of the main issues stems from the treatment of heterogeneous experimental data used to predict the architecture of native complexes. We pro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Giorgio Tamò, Andrea Maesani, Sylvain Träger, Matteo T. Degiacomi, Dario Floreano, Matteo Dal Peraro
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e29bb2fc464449f9869ec21e95a8eb67
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e29bb2fc464449f9869ec21e95a8eb67
record_format dspace
spelling oai:doaj.org-article:e29bb2fc464449f9869ec21e95a8eb672021-12-02T15:04:54ZDisentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies10.1038/s41598-017-00266-w2045-2322https://doaj.org/article/e29bb2fc464449f9869ec21e95a8eb672017-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-00266-whttps://doaj.org/toc/2045-2322Abstract Predicting the structure of large molecular assemblies remains a challenging task in structural biology when using integrative modeling approaches. One of the main issues stems from the treatment of heterogeneous experimental data used to predict the architecture of native complexes. We propose a new method, applied here for the first time to a set of symmetrical complexes, based on evolutionary computation that treats every available experimental input independently, bypassing the need to balance weight components assigned to aggregated fitness functions during optimization.Giorgio TamòAndrea MaesaniSylvain TrägerMatteo T. DegiacomiDario FloreanoMatteo Dal PeraroNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Giorgio Tamò
Andrea Maesani
Sylvain Träger
Matteo T. Degiacomi
Dario Floreano
Matteo Dal Peraro
Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies
description Abstract Predicting the structure of large molecular assemblies remains a challenging task in structural biology when using integrative modeling approaches. One of the main issues stems from the treatment of heterogeneous experimental data used to predict the architecture of native complexes. We propose a new method, applied here for the first time to a set of symmetrical complexes, based on evolutionary computation that treats every available experimental input independently, bypassing the need to balance weight components assigned to aggregated fitness functions during optimization.
format article
author Giorgio Tamò
Andrea Maesani
Sylvain Träger
Matteo T. Degiacomi
Dario Floreano
Matteo Dal Peraro
author_facet Giorgio Tamò
Andrea Maesani
Sylvain Träger
Matteo T. Degiacomi
Dario Floreano
Matteo Dal Peraro
author_sort Giorgio Tamò
title Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies
title_short Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies
title_full Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies
title_fullStr Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies
title_full_unstemmed Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies
title_sort disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/e29bb2fc464449f9869ec21e95a8eb67
work_keys_str_mv AT giorgiotamo disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies
AT andreamaesani disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies
AT sylvaintrager disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies
AT matteotdegiacomi disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies
AT dariofloreano disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies
AT matteodalperaro disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies
_version_ 1718389049733939200