Synaptic metaplasticity in binarized neural networks
Deep neural networks usually rapidly forget the previously learned tasks while training new ones. Laborieux et al. propose a method for training binarized neural networks inspired by neuronal metaplasticity that allows to avoid catastrophic forgetting and is relevant for neuromorphic applications.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e2b90fdc25c546258715984597f47c48 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e2b90fdc25c546258715984597f47c48 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e2b90fdc25c546258715984597f47c482021-12-02T15:38:20ZSynaptic metaplasticity in binarized neural networks10.1038/s41467-021-22768-y2041-1723https://doaj.org/article/e2b90fdc25c546258715984597f47c482021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22768-yhttps://doaj.org/toc/2041-1723Deep neural networks usually rapidly forget the previously learned tasks while training new ones. Laborieux et al. propose a method for training binarized neural networks inspired by neuronal metaplasticity that allows to avoid catastrophic forgetting and is relevant for neuromorphic applications.Axel LaborieuxMaxence ErnoultTifenn HirtzlinDamien QuerliozNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Axel Laborieux Maxence Ernoult Tifenn Hirtzlin Damien Querlioz Synaptic metaplasticity in binarized neural networks |
description |
Deep neural networks usually rapidly forget the previously learned tasks while training new ones. Laborieux et al. propose a method for training binarized neural networks inspired by neuronal metaplasticity that allows to avoid catastrophic forgetting and is relevant for neuromorphic applications. |
format |
article |
author |
Axel Laborieux Maxence Ernoult Tifenn Hirtzlin Damien Querlioz |
author_facet |
Axel Laborieux Maxence Ernoult Tifenn Hirtzlin Damien Querlioz |
author_sort |
Axel Laborieux |
title |
Synaptic metaplasticity in binarized neural networks |
title_short |
Synaptic metaplasticity in binarized neural networks |
title_full |
Synaptic metaplasticity in binarized neural networks |
title_fullStr |
Synaptic metaplasticity in binarized neural networks |
title_full_unstemmed |
Synaptic metaplasticity in binarized neural networks |
title_sort |
synaptic metaplasticity in binarized neural networks |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/e2b90fdc25c546258715984597f47c48 |
work_keys_str_mv |
AT axellaborieux synapticmetaplasticityinbinarizedneuralnetworks AT maxenceernoult synapticmetaplasticityinbinarizedneuralnetworks AT tifennhirtzlin synapticmetaplasticityinbinarizedneuralnetworks AT damienquerlioz synapticmetaplasticityinbinarizedneuralnetworks |
_version_ |
1718386205016457216 |