Synaptic metaplasticity in binarized neural networks

Deep neural networks usually rapidly forget the previously learned tasks while training new ones. Laborieux et al. propose a method for training binarized neural networks inspired by neuronal metaplasticity that allows to avoid catastrophic forgetting and is relevant for neuromorphic applications.

Guardado en:
Detalles Bibliográficos
Autores principales: Axel Laborieux, Maxence Ernoult, Tifenn Hirtzlin, Damien Querlioz
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/e2b90fdc25c546258715984597f47c48
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e2b90fdc25c546258715984597f47c48
record_format dspace
spelling oai:doaj.org-article:e2b90fdc25c546258715984597f47c482021-12-02T15:38:20ZSynaptic metaplasticity in binarized neural networks10.1038/s41467-021-22768-y2041-1723https://doaj.org/article/e2b90fdc25c546258715984597f47c482021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22768-yhttps://doaj.org/toc/2041-1723Deep neural networks usually rapidly forget the previously learned tasks while training new ones. Laborieux et al. propose a method for training binarized neural networks inspired by neuronal metaplasticity that allows to avoid catastrophic forgetting and is relevant for neuromorphic applications.Axel LaborieuxMaxence ErnoultTifenn HirtzlinDamien QuerliozNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Axel Laborieux
Maxence Ernoult
Tifenn Hirtzlin
Damien Querlioz
Synaptic metaplasticity in binarized neural networks
description Deep neural networks usually rapidly forget the previously learned tasks while training new ones. Laborieux et al. propose a method for training binarized neural networks inspired by neuronal metaplasticity that allows to avoid catastrophic forgetting and is relevant for neuromorphic applications.
format article
author Axel Laborieux
Maxence Ernoult
Tifenn Hirtzlin
Damien Querlioz
author_facet Axel Laborieux
Maxence Ernoult
Tifenn Hirtzlin
Damien Querlioz
author_sort Axel Laborieux
title Synaptic metaplasticity in binarized neural networks
title_short Synaptic metaplasticity in binarized neural networks
title_full Synaptic metaplasticity in binarized neural networks
title_fullStr Synaptic metaplasticity in binarized neural networks
title_full_unstemmed Synaptic metaplasticity in binarized neural networks
title_sort synaptic metaplasticity in binarized neural networks
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/e2b90fdc25c546258715984597f47c48
work_keys_str_mv AT axellaborieux synapticmetaplasticityinbinarizedneuralnetworks
AT maxenceernoult synapticmetaplasticityinbinarizedneuralnetworks
AT tifennhirtzlin synapticmetaplasticityinbinarizedneuralnetworks
AT damienquerlioz synapticmetaplasticityinbinarizedneuralnetworks
_version_ 1718386205016457216