Multivariate classification techniques and mass spectrometry as a tool in the screening of patients with fibromyalgia

Abstract Fibromyalgia is a rheumatological disorder that causes chronic pain and other symptomatic conditions such as depression and anxiety. Despite its relevance, the disease still presents a complex diagnosis where the doctor needs to have a correct clinical interpretation of the symptoms. In thi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marcelo V. S. Alves, Lanaia I. L. Maciel, Ruver R. F. Ramalho, Leomir A. S. Lima, Boniek G. Vaz, Camilo L. M. Morais, João O. S. Passos, Rodrigo Pegado, Kássio M. G. Lima
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e2bce6dbd4b643dba89e88019d0668ef
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e2bce6dbd4b643dba89e88019d0668ef
record_format dspace
spelling oai:doaj.org-article:e2bce6dbd4b643dba89e88019d0668ef2021-11-21T12:24:43ZMultivariate classification techniques and mass spectrometry as a tool in the screening of patients with fibromyalgia10.1038/s41598-021-02141-12045-2322https://doaj.org/article/e2bce6dbd4b643dba89e88019d0668ef2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-02141-1https://doaj.org/toc/2045-2322Abstract Fibromyalgia is a rheumatological disorder that causes chronic pain and other symptomatic conditions such as depression and anxiety. Despite its relevance, the disease still presents a complex diagnosis where the doctor needs to have a correct clinical interpretation of the symptoms. In this context, it is valid to study tools that assist in the screening of this disease, using chemical work techniques such as mass spectroscopy. In this study, an analytical method is proposed to detect individuals with fibromyalgia (n = 20, 10 control samples and 10 samples with fibromyalgia) from blood plasma samples analyzed by mass spectrometry with paper spray ionization and subsequent multivariate classification of the spectral data (unsupervised and supervised), in addition to the treatment of selected variables with possible associations with metabolomics. Exploratory analysis with principal component analysis (PCA) and supervised analysis with successive projections algorithm with linear discriminant analysis (SPA-LDA) showed satisfactory results with 100% accuracy for sample prediction in both groups. This demonstrates that this combination of techniques can be used as a simple, reliable and fast tool in the development of clinical diagnosis of Fibromyalgia.Marcelo V. S. AlvesLanaia I. L. MacielRuver R. F. RamalhoLeomir A. S. LimaBoniek G. VazCamilo L. M. MoraisJoão O. S. PassosRodrigo PegadoKássio M. G. LimaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Marcelo V. S. Alves
Lanaia I. L. Maciel
Ruver R. F. Ramalho
Leomir A. S. Lima
Boniek G. Vaz
Camilo L. M. Morais
João O. S. Passos
Rodrigo Pegado
Kássio M. G. Lima
Multivariate classification techniques and mass spectrometry as a tool in the screening of patients with fibromyalgia
description Abstract Fibromyalgia is a rheumatological disorder that causes chronic pain and other symptomatic conditions such as depression and anxiety. Despite its relevance, the disease still presents a complex diagnosis where the doctor needs to have a correct clinical interpretation of the symptoms. In this context, it is valid to study tools that assist in the screening of this disease, using chemical work techniques such as mass spectroscopy. In this study, an analytical method is proposed to detect individuals with fibromyalgia (n = 20, 10 control samples and 10 samples with fibromyalgia) from blood plasma samples analyzed by mass spectrometry with paper spray ionization and subsequent multivariate classification of the spectral data (unsupervised and supervised), in addition to the treatment of selected variables with possible associations with metabolomics. Exploratory analysis with principal component analysis (PCA) and supervised analysis with successive projections algorithm with linear discriminant analysis (SPA-LDA) showed satisfactory results with 100% accuracy for sample prediction in both groups. This demonstrates that this combination of techniques can be used as a simple, reliable and fast tool in the development of clinical diagnosis of Fibromyalgia.
format article
author Marcelo V. S. Alves
Lanaia I. L. Maciel
Ruver R. F. Ramalho
Leomir A. S. Lima
Boniek G. Vaz
Camilo L. M. Morais
João O. S. Passos
Rodrigo Pegado
Kássio M. G. Lima
author_facet Marcelo V. S. Alves
Lanaia I. L. Maciel
Ruver R. F. Ramalho
Leomir A. S. Lima
Boniek G. Vaz
Camilo L. M. Morais
João O. S. Passos
Rodrigo Pegado
Kássio M. G. Lima
author_sort Marcelo V. S. Alves
title Multivariate classification techniques and mass spectrometry as a tool in the screening of patients with fibromyalgia
title_short Multivariate classification techniques and mass spectrometry as a tool in the screening of patients with fibromyalgia
title_full Multivariate classification techniques and mass spectrometry as a tool in the screening of patients with fibromyalgia
title_fullStr Multivariate classification techniques and mass spectrometry as a tool in the screening of patients with fibromyalgia
title_full_unstemmed Multivariate classification techniques and mass spectrometry as a tool in the screening of patients with fibromyalgia
title_sort multivariate classification techniques and mass spectrometry as a tool in the screening of patients with fibromyalgia
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/e2bce6dbd4b643dba89e88019d0668ef
work_keys_str_mv AT marcelovsalves multivariateclassificationtechniquesandmassspectrometryasatoolinthescreeningofpatientswithfibromyalgia
AT lanaiailmaciel multivariateclassificationtechniquesandmassspectrometryasatoolinthescreeningofpatientswithfibromyalgia
AT ruverrframalho multivariateclassificationtechniquesandmassspectrometryasatoolinthescreeningofpatientswithfibromyalgia
AT leomiraslima multivariateclassificationtechniquesandmassspectrometryasatoolinthescreeningofpatientswithfibromyalgia
AT boniekgvaz multivariateclassificationtechniquesandmassspectrometryasatoolinthescreeningofpatientswithfibromyalgia
AT camilolmmorais multivariateclassificationtechniquesandmassspectrometryasatoolinthescreeningofpatientswithfibromyalgia
AT joaoospassos multivariateclassificationtechniquesandmassspectrometryasatoolinthescreeningofpatientswithfibromyalgia
AT rodrigopegado multivariateclassificationtechniquesandmassspectrometryasatoolinthescreeningofpatientswithfibromyalgia
AT kassiomglima multivariateclassificationtechniquesandmassspectrometryasatoolinthescreeningofpatientswithfibromyalgia
_version_ 1718419036704866304