Circular convolution-based feature extraction algorithm for classification of high-dimensional datasets
High-dimensional data analysis has become the most challenging task nowadays. Dimensionality reduction plays an important role here. It focuses on data features, which have proved their impact on accuracy, execution time, and space requirement. In this study, a dimensionality reduction method is pro...
Guardado en:
Autores principales: | Tajanpure Rupali, Muddana Akkalakshmi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e2cd7872f64c48ff9166c079fd85fa5f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
por: Emmanuel Pintelas, et al.
Publicado: (2021) -
Effect on speech emotion classification of a feature selection approach using a convolutional neural network
por: Ammar Amjad, et al.
Publicado: (2021) -
Heart sound classification using signal processing and machine learning algorithms
por: Yasser Zeinali, et al.
Publicado: (2022) -
Metaheuristic algorithms for one-dimensional bin-packing problems: A survey of recent advances and applications
por: Munien Chanaleä, et al.
Publicado: (2021) -
Feature Selection for High-Dimensional Datasets through a Novel Artificial Bee Colony Framework
por: Yuanzi Zhang, et al.
Publicado: (2021)