Circular convolution-based feature extraction algorithm for classification of high-dimensional datasets
High-dimensional data analysis has become the most challenging task nowadays. Dimensionality reduction plays an important role here. It focuses on data features, which have proved their impact on accuracy, execution time, and space requirement. In this study, a dimensionality reduction method is pro...
Enregistré dans:
Auteurs principaux: | Tajanpure Rupali, Muddana Akkalakshmi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e2cd7872f64c48ff9166c079fd85fa5f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
par: Emmanuel Pintelas, et autres
Publié: (2021) -
Effect on speech emotion classification of a feature selection approach using a convolutional neural network
par: Ammar Amjad, et autres
Publié: (2021) -
Heart sound classification using signal processing and machine learning algorithms
par: Yasser Zeinali, et autres
Publié: (2022) -
Metaheuristic algorithms for one-dimensional bin-packing problems: A survey of recent advances and applications
par: Munien Chanaleä, et autres
Publié: (2021) -
Feature Selection for High-Dimensional Datasets through a Novel Artificial Bee Colony Framework
par: Yuanzi Zhang, et autres
Publié: (2021)