Detailed modeling of positive selection improves detection of cancer driver genes
Finding driver genes sheds lights on the biological mechanisms propelling the development of a tumour, and can suggest therapeutic strategies. Here, the authors develop driverMAPS, a model-based approach to identify driver genes, and apply it to TCGA datasets.
Guardado en:
Autores principales: | Siming Zhao, Jun Liu, Pranav Nanga, Yuwen Liu, A. Ercument Cicek, Nicholas Knoblauch, Chuan He, Matthew Stephens, Xin He |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e2cfc4a4bb3344c3b518ce9ae9dea3be |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Design of Medical Image Detail Enhancement Algorithm for Ankle Joint Talar Osteochondral Injury
por: Yundong Liu, et al.
Publicado: (2021) -
Genome-wide estimation of recombination, mutation and positive selection enlightens diversification drivers of Mycobacterium bovis
por: Ana C. Reis, et al.
Publicado: (2021) -
Adaptive colour restoration and detail retention for image enhancement
por: Kangjian He, et al.
Publicado: (2021) -
Truck Driver Fatigue Detection Based on Video Sequences in Open-Pit Mines
por: Yi Wang, et al.
Publicado: (2021) -
Remote sensing phenology of two Chinese northern Sphagnum bogs under climate drivers during 2001 and 2018
por: Yuwen Pang, et al.
Publicado: (2021)