Detailed modeling of positive selection improves detection of cancer driver genes
Finding driver genes sheds lights on the biological mechanisms propelling the development of a tumour, and can suggest therapeutic strategies. Here, the authors develop driverMAPS, a model-based approach to identify driver genes, and apply it to TCGA datasets.
Enregistré dans:
Auteurs principaux: | Siming Zhao, Jun Liu, Pranav Nanga, Yuwen Liu, A. Ercument Cicek, Nicholas Knoblauch, Chuan He, Matthew Stephens, Xin He |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e2cfc4a4bb3344c3b518ce9ae9dea3be |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Design of Medical Image Detail Enhancement Algorithm for Ankle Joint Talar Osteochondral Injury
par: Yundong Liu, et autres
Publié: (2021) -
Genome-wide estimation of recombination, mutation and positive selection enlightens diversification drivers of Mycobacterium bovis
par: Ana C. Reis, et autres
Publié: (2021) -
Adaptive colour restoration and detail retention for image enhancement
par: Kangjian He, et autres
Publié: (2021) -
Truck Driver Fatigue Detection Based on Video Sequences in Open-Pit Mines
par: Yi Wang, et autres
Publié: (2021) -
Remote sensing phenology of two Chinese northern Sphagnum bogs under climate drivers during 2001 and 2018
par: Yuwen Pang, et autres
Publié: (2021)