Random Subspace Ensembles of Fully Convolutional Network for Time Series Classification
Time series classification (TSC) task is one of the most significant topics in data mining. Among all methods for this issue, the deep-learning-based shows superior performance for its good adaption to raw series data and automatic extraction of features. However, rare eyes are kept on composing ens...
Guardado en:
Autores principales: | Yangqianhui Zhang, Chunyang Mo, Jiajun Ma, Liang Zhao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e2d5caf095bd493eb2d2bfcb456aece0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Improved Selective Ensemble Learning Method for Highway Traffic Flow State Identification
por: Zhanzhong Wang, et al.
Publicado: (2020) -
Multiclass Skin Cancer Classification Using Ensemble of Fine-Tuned Deep Learning Models
por: Nabeela Kausar, et al.
Publicado: (2021) -
Dual Image-Based CNN Ensemble Model for Waste Classification in Reverse Vending Machine
por: Taeyoung Yoo, et al.
Publicado: (2021) -
Deep Convolutional Neural Network Ensembles Using ECOC
por: Sara Atito Ali Ahmed, et al.
Publicado: (2021) -
EEG Mental Recognition Based on RKHS Learning and Source Dictionary Regularized RKHS Subspace Learning
por: Wenjie Lei, et al.
Publicado: (2021)