Strain-Gradient Crystal Plasticity Finite Element Modeling of Slip Band Formation in α-Zirconium
Two methods for the determination of geometrically necessary dislocation (GND) densities are implemented in a lower-order strain-gradient crystal plasticity finite element model. The equations are implemented in user material (UMAT) subroutines. Method I has a direct and unique solution for the dens...
Saved in:
Main Authors: | Omid Sedaghat, Hamidreza Abdolvand |
---|---|
Format: | article |
Language: | EN |
Published: |
MDPI AG
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/e2d61e89a43147399c57b5499c8475b9 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Improving Texture and Microstructure Homogeneity in High-Purity Ta Sheets by Warm Cross Rolling and Annealing
by: Doudou Long, et al.
Published: (2021) -
Investigation of the mechanism of the indentation size effect for titanium
by: Shota HASUNUMA, et al.
Published: (2019) -
Investigation of the indentation size effect based on measurement of the geometrically necessary dislocation density by electron backscatter diffraction
by: Shota HASUNUMA, et al.
Published: (2018) -
Rolling Texture of Cu–30%Zn Alloy Using Taylor Model Based on Twinning and Coplanar Slip
by: Shih-Chieh Hsiao, et al.
Published: (2021) -
Simultaneous dislocation of the Lisfranc and Chopart joints: A case report, surgical technique, and literature review
by: Rodolfo Morales-Avalos, et al.
Published: (2021)