Bayesian Optimization of Bose-Einstein Condensates
Abstract Machine Learning methods are emerging as faster and efficient alternatives to numerical simulation techniques. The field of Scientific Computing has started adopting these data-driven approaches to faithfully model physical phenomena using scattered, noisy observations from coarse-grained g...
Guardado en:
Autores principales: | Tamil Arasan Bakthavatchalam, Suriyadeepan Ramamoorthy, Malaikannan Sankarasubbu, Radha Ramaswamy, Vijayalakshmi Sethuraman |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e2e87a1639044c67a46590d351cc9e6e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Tunable Polarons in Bose-Einstein Condensates
por: E. Compagno, et al.
Publicado: (2017) -
Bose–Einstein condensate soliton qubit states for metrological applications
por: The Vinh Ngo, et al.
Publicado: (2021) -
Paramagnetic resonance in spin-polarized disordered Bose-Einstein condensates
por: V. M. Kovalev, et al.
Publicado: (2017) -
Ionic polaron in a Bose-Einstein condensate
por: Grigory E. Astrakharchik, et al.
Publicado: (2021) -
Modified Bose-Einstein condensation in an optical quantum gas
por: Mario Vretenar, et al.
Publicado: (2021)