18S rRNA amplicon sequence data (V1–V3) of the Bronx river estuary, New York

Characterising and monitoring biological diversity to foster sustainable ecosystems is highly recommended as urban centres rapidly expand. However, much of New York City’s biodiversity remains undescribed, including in the historically degraded, but recovering Bronx River Estuary. In a pilot study t...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Melissa R. Ingala, Irena E. Werner, Allison M. Fitzgerald, Eugenia Naro-Maciel
Format: article
Langue:EN
Publié: Pensoft Publishers 2021
Sujets:
Accès en ligne:https://doaj.org/article/e302ec4ac5b24d2a8dc0213bdef59a5a
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Characterising and monitoring biological diversity to foster sustainable ecosystems is highly recommended as urban centres rapidly expand. However, much of New York City’s biodiversity remains undescribed, including in the historically degraded, but recovering Bronx River Estuary. In a pilot study to identify organisms and characterise biodiversity patterns there, 18S rRNA gene amplicons (V1–V3 region), obtained from river sediments and surface waters of Hunts Point Riverside and Soundview Parks, were sequenced. Across 48 environmental samples collected over three seasons in 2015 and 2016, following quality control and contaminant removal, 2,763 Amplicon Sequence Variants (ASVs) were identified from 1,918,463 sequences. Rarefaction analysis showed sufficient sampling depth, and community composition varied over time and by substrate at the study sites over the sampling period. Protists, plants, fungi and animals, including organisms of management concern, such as Eastern oysters (Crassostrea virginica), wildlife pathogens and groups related to Harmful Algal Blooms, were detected. The most common taxa identified in river sediments were annelid worms, nematodes and diatoms. In the water column, the most commonly observed organisms were diatoms, algae of the phylum Cryptophyceae, ciliates and dinoflagellates. The presented dataset demonstrates the reach of 18S rRNA metabarcoding for characterising biodiversity in an urban estuary.